Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing the evolution of a model flower

28.01.2015

Scientists take computational approach to evidence of plant climate adaptation using iPlant, Stampede and Lonestar supercomputers

Scientists using supercomputers found genes sensitive to cold and drought in a plant help it survive climate change. These findings increase basic understanding of plant adaptation and can be applied to improve crops.


Scientists took a computational approach using the Stampede and Lonestar supercomputers to compare lab data with reference genomes of over a thousand strains of Arabidopsis sampled throughout Europe and Asia.

Credit: Juenger Lab

The computational biology study on the flowering mustard weed Arabidopsis thaliana appeared in the journal Molecular Biology Evolution in September 2014. The iPlant Collaborative and the supercomputers Stampede, Lonestar and Ranger of the Texas Advanced Computing Center aided in the research. Study funding came from the National Science Foundation (NSF) and the U.S. Department of Agriculture.

"We found pretty good evidence, certainly the best evidence to date, that the evolution of gene expression is an important way that plant populations adapt to local environments," said study co-author Jesse Lasky, an Earth Institute fellow at Columbia University.

Thomas Juenger is another co-author and a faculty member in the Department of Integrative biology of The University of Texas at Austin. The Juenger Lab has studied Arabidopsis thaliana for over a decade. "It's one of the model plants that biologists study," Juenger said. Arabidopsis has one of the smallest genomes of any plant, and in 2000 it was the first plant genome to be completely sequenced.

Plant biologists consider Arabidopsis to be like the fruit fly of their genetic research. But instead of knocking out or ramping up genes with genetic engineering, Juenger studies natural variation in genes. "We want to understand how they've evolved in response to the processes of natural selection and gene flow and mutation in the field," he said.

To date, plants have stumped scientists' understanding of how life adapts to climate, specifically the details of gene expression, which can vary wildly in a hardy plant species like Arabidopsis that thrives in environments as diverse as Scandinavia, North Africa, and Central Asia. Genes, or snippets of the four-letter DNA molecule, carry not only the code for which proteins make for its survival but also the instructions for how many to make, or express. Gene expression "... is the part of the organism that we show here is strongly involved in local adaptation to environment," Lasky said.

Because plants are rooted, they have to stand their ground against changes in temperature, soil moisture, and insect attacks to name a few. Juenger explained that one way they cope with environmental change is to change their gene expression.

"As a plant starts to sense dropping temperatures, a cascade of gene expression can allow the plant to acclimatize to cold temperatures, and in effect prepare itself for the coming freezing conditions," Juenger said. So his science team used prior lab work that exposed seedlings of Arabidopsis to artificial cold and drought stress to measure changes in gene expression across the entire genome.

Juenger described the problem of finding the right gene like finding a needle in a haystack. Arabidopsis' relatively tiny genome still contains over 25,000 genes. The needle Juenger's team sought was what's called a SNP polymorphism, a single letter difference in the over 100 million DNA base pairs that comprise the genes of Arabidopsis. "This is a fundamental challenge in biology," Juenger said. "We're looking through tens of thousands of genes to find the right ones, the few that might actually matter."

The scientists took the genes they found and compared them with genomic data from previous studies that sampled Arabidopsis from populations throughout Europe and Asia. They narrowed that reference data to 1,003 strains of the flowering mustard weed. Of those genes that showed changes in their response to their environment, the scientists needed to know if they also showed changes in DNA along environmental gradients. Such a pattern "suggests that there are changes in the DNA sequence that are adapted to those local conditions and that are associated with changes in gene expression," Lasky said.

The research team statistically tested for associations between climate and SNP polymorphism by making the hypothesis null, or assuming no association. They did that by shuffling the data and doing permutation testing. "We can randomize climatic variation with respect to SNP polymorphism variation and do that thousands and thousands of times and ask, what sort of test statistic might we observe by chance alone," Juenger said. "We can compare that to our real, empirical data."

The computational challenges were daunting, involving thousands of individual strains of Arabidopsis with hundreds of thousands of markers across the genome and testing for a dozen environmental variables. "It's impossible to do this on a standard desktop computer, and it requires some of the throughput that we can have on a cluster like Stampede or Lonestar," Juenger said. "The computational time on the clusters at TACC allowed us to evaluate the hypothesis that generated from the SNP data."

Lasky added that "to run these models across the genome, you quickly run out of time. It's really just a problem where you do lots of little things many, many times. It's much easier to accomplish that when you can run that problem on many cores across a cluster. That was the challenge."

"I didn't have any experience with high performance computing before this," Lasky confided.

Lasky called on Weijia Xu, the group lead for the Data Mining and Statistics Group at TACC. "He helped me orient myself to what kind of problem I had and how to scale that up to run it on some of the clusters," Lasky said. Xu also helped by writing a parametric job launcher, which allowed Lasky to get his separate runs across the genome started more easily.

"It was a code I developed to launch multiple R jobs in parallel using an MPI interface," Xu said of the launcher. Scientists commonly use the R statistical programming language; and MPI is short for Message Passing Interface, which is a software library that breaks up large computing jobs into smaller ones to run in parallel on the nodes of a cluster.

The NSF-funded iPlant Collaborative helps life scientists use high performance computers. Juenger remarked that "iPlant, associated with TACC, has certainly been developing lots of new tools, simplifying computational tools for biologists, and giving us access to data storage as well as service units through high performance computing clusters like those at TACC. It's a helpful, timely program that's impacting plant biologists in individual labs around the country."

Lasky notes that while the results of the experiment with Arabidopsis are promising, more confirmation is needed. "We have experimental work here, but we haven't experimentally shown that the genes that we identified are causing localized adaptations."

Media Contact

Faith Singer-Villalobos
faith@tacc.utexas.edu
512-232-5771

http://www.tacc.utexas.edu/ 

Faith Singer-Villalobos | EurekAlert!

Further reports about: Advanced Computing Arabidopsis Arabidopsis thaliana DNA Supercomputing TACC flower genes

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>