Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success with 'cisgenics' in forestry offers new tools for biotechnology

09.06.2010
Forestry scientists at Oregon State University have demonstrated for the first time that the growth rate and other characteristics of trees can be changed through “cisgenics” – a type of genetic engineering that is conceptually similar to traditional plant breeding.

Cisgenics uses genes from closely related species that usually are sexually compatible. If governments choose to regulate it similarly to conventional breeding, experts say, it could herald a new future for biotechnology, not only in forestry but crop agriculture and other areas.

In findings just published in Plant Biotechnology Journal, researchers used cisgenic manipulation to affect the actions of gibberellic acid, a plant hormone, in poplar trees. This had significant effects on the growth rate, morphology and wood properties of seedling trees.

The advance is important for forestry research, but perhaps even more significant in demonstrating the general value and success of cisgenics.

“Until now, most applications of biotechnology have been done with transgenics, in which you take genetic traits from one plant or animal and transfer them into an unrelated species,” said Steven Strauss, a distinguished professor of forest biotechnology at OSU. “By contrast, cisgenics uses whole genes from the same plant or a very closely related species. We may be able to improve on the slow and uncertain process of plant breeding with greater speed and certainty of effect.”

This is possible in part because of the growing knowledge about what specific genes do in plants and animals, and enormous increases in the speed of genome sequencing, or mapping them out in their entirety. Sequencing that used to take years can now be accomplished in days.

Modern plant breeding, in which related plant species are systematically interbred to create improved traits – such as faster growth, more desirable qualities, drought or disease resistance – dates back at least to the late 1800s. It’s the basis of all varieties of plants that form the backbone of world agriculture. And the same basic mechanism is at work with cisgenics, except it’s done with a much higher degree of genetic understanding, using genome and biotechnology techniques of which Charles Darwin and early plant breeders never would have dreamed.

Strauss believes that the more natural process and greater specificity of cisgenic biotechnology may help transcend some of the costly, time-consuming and cumbersome regulatory hurdles that have held back this science in forestry, agriculture and other fields.

“With cisgenics, you know exactly what gene you’re picking, what you’re putting in, and it’s a process that is similar to what happens naturally during crop breeding and evolution,” Strauss said. “Our genetic tools just make the process more precise, and we do it faster. We believe that this will help address some people’s concerns, and that regulatory agencies may soon view this quite differently than the type of genetic modification done with conventional transgenics.

“We’re not trying to insert genes from a fish into a strawberry here,” Strauss said. “We’re taking a gene from a poplar tree and putting it back into a poplar tree. That’s easier for a lot of people to accept, and scientifically we believe such approaches should be exempt from the regulatory reviews required for most transgenic crops. ”

Genetic analysis of natural variation in plant traits provide important clues for cisgenic approaches, Strauss said. In any group of plants, some might grow taller or better resist disease than others. So once researchers know what genes are controlling growth and disease resistance, they can take them from one plant and put them back into the same or closely related species, and amplify or attenuate the desired characteristic.

“That is conceptually the same thing we’ve been doing in conventional plant breeding for two centuries,” said Strauss, a world leader in the application of biotechnology to forestry.

This research has been supported by the U.S. Department of Energy, and the Tree Biosafety and Genomics Research Cooperative based at OSU.

In the new study with poplar trees, the researchers were able to use cisgenic technology to change the growth rate of the trees – some grew faster and others slower, in a greenhouse setting. Both smaller and taller trees can be useful for different kinds of applications. There can actually be a wide range of variation possible with this approach, allowing scientists to create different characteristics and simply select the ones that have value after multiple gene insertions and field tests.

Desirable characteristics might relate to growth rate, height, drought or disease resistance, flowering time, seed production or other traits. A gene that gives plants more heat tolerance might be useful in helping plants to deal with a warming climate. Some ornamental trees might be developed for shorter height to use in compact urban areas.

Applications in bioenergy, such as for faster growth or modified biomass for processing into ethanol, are also possible. And tree pests and diseases are proliferating at an alarming rate, due to exotic pests and climate variation. The ability to insert resistance genes from related species could provide new tools to deal with some of these problems, and do it much faster than is possible with conventional tree breeding, which often takes many years.

The much heralded “green revolution,” in fact, took decades, but produced such accomplishments as wheat plants with shorter stems that were sturdier and spent more of the plant’s energy on seed production instead of stem growth.

In this study, Strauss showed that it is feasible to create similar changes with native cisgenes in one year.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Steven Strauss | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>