Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Success with 'cisgenics' in forestry offers new tools for biotechnology

09.06.2010
Forestry scientists at Oregon State University have demonstrated for the first time that the growth rate and other characteristics of trees can be changed through “cisgenics” – a type of genetic engineering that is conceptually similar to traditional plant breeding.

Cisgenics uses genes from closely related species that usually are sexually compatible. If governments choose to regulate it similarly to conventional breeding, experts say, it could herald a new future for biotechnology, not only in forestry but crop agriculture and other areas.

In findings just published in Plant Biotechnology Journal, researchers used cisgenic manipulation to affect the actions of gibberellic acid, a plant hormone, in poplar trees. This had significant effects on the growth rate, morphology and wood properties of seedling trees.

The advance is important for forestry research, but perhaps even more significant in demonstrating the general value and success of cisgenics.

“Until now, most applications of biotechnology have been done with transgenics, in which you take genetic traits from one plant or animal and transfer them into an unrelated species,” said Steven Strauss, a distinguished professor of forest biotechnology at OSU. “By contrast, cisgenics uses whole genes from the same plant or a very closely related species. We may be able to improve on the slow and uncertain process of plant breeding with greater speed and certainty of effect.”

This is possible in part because of the growing knowledge about what specific genes do in plants and animals, and enormous increases in the speed of genome sequencing, or mapping them out in their entirety. Sequencing that used to take years can now be accomplished in days.

Modern plant breeding, in which related plant species are systematically interbred to create improved traits – such as faster growth, more desirable qualities, drought or disease resistance – dates back at least to the late 1800s. It’s the basis of all varieties of plants that form the backbone of world agriculture. And the same basic mechanism is at work with cisgenics, except it’s done with a much higher degree of genetic understanding, using genome and biotechnology techniques of which Charles Darwin and early plant breeders never would have dreamed.

Strauss believes that the more natural process and greater specificity of cisgenic biotechnology may help transcend some of the costly, time-consuming and cumbersome regulatory hurdles that have held back this science in forestry, agriculture and other fields.

“With cisgenics, you know exactly what gene you’re picking, what you’re putting in, and it’s a process that is similar to what happens naturally during crop breeding and evolution,” Strauss said. “Our genetic tools just make the process more precise, and we do it faster. We believe that this will help address some people’s concerns, and that regulatory agencies may soon view this quite differently than the type of genetic modification done with conventional transgenics.

“We’re not trying to insert genes from a fish into a strawberry here,” Strauss said. “We’re taking a gene from a poplar tree and putting it back into a poplar tree. That’s easier for a lot of people to accept, and scientifically we believe such approaches should be exempt from the regulatory reviews required for most transgenic crops. ”

Genetic analysis of natural variation in plant traits provide important clues for cisgenic approaches, Strauss said. In any group of plants, some might grow taller or better resist disease than others. So once researchers know what genes are controlling growth and disease resistance, they can take them from one plant and put them back into the same or closely related species, and amplify or attenuate the desired characteristic.

“That is conceptually the same thing we’ve been doing in conventional plant breeding for two centuries,” said Strauss, a world leader in the application of biotechnology to forestry.

This research has been supported by the U.S. Department of Energy, and the Tree Biosafety and Genomics Research Cooperative based at OSU.

In the new study with poplar trees, the researchers were able to use cisgenic technology to change the growth rate of the trees – some grew faster and others slower, in a greenhouse setting. Both smaller and taller trees can be useful for different kinds of applications. There can actually be a wide range of variation possible with this approach, allowing scientists to create different characteristics and simply select the ones that have value after multiple gene insertions and field tests.

Desirable characteristics might relate to growth rate, height, drought or disease resistance, flowering time, seed production or other traits. A gene that gives plants more heat tolerance might be useful in helping plants to deal with a warming climate. Some ornamental trees might be developed for shorter height to use in compact urban areas.

Applications in bioenergy, such as for faster growth or modified biomass for processing into ethanol, are also possible. And tree pests and diseases are proliferating at an alarming rate, due to exotic pests and climate variation. The ability to insert resistance genes from related species could provide new tools to deal with some of these problems, and do it much faster than is possible with conventional tree breeding, which often takes many years.

The much heralded “green revolution,” in fact, took decades, but produced such accomplishments as wheat plants with shorter stems that were sturdier and spent more of the plant’s energy on seed production instead of stem growth.

In this study, Strauss showed that it is feasible to create similar changes with native cisgenes in one year.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Steven Strauss | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>