Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests expanded concept of 'urban watershed'

15.06.2012
A US Forest Service study recently published in Urban Ecosystems proposes an expanded view of the complex world of urban water
Within two decades, 60 percent of the world's population will live in cities, and coping with the resulting urban drinking water and sanitation issues will be one of the greatest challenges of this century. A U.S. Forest Service study recently published in Urban Ecosystems proposes an expanded view of the complex world of urban water.

The study presents a new conceptual framework that addresses characteristics of watersheds that are affected by urban land uses, including:

hydrologic connectivity between aquatic and terrestrial ecosystems that alters transport and transformation processes within watersheds at multiple spatial and temporal dimensions,

unique characteristics and challenges of recognizing engineered headwaters as part of ecosystems and linkages to larger order streams and receiving waters,

changes in the relationship between urban infrastructure and watershed material transport and transformation over time.

"Urban ecosystems are a critical part of the landscape and influence the environmental health of entire regions," according to Michael T. Rains, director of the Northern Research Station. "Forest Service research is contributing to meeting the needs of cities and the responsible stewardship of urban natural resources."

Co-authors Ken Belt, a hydrologist/aquatic ecologist with the Forest Service's Northern Research Station, and Sujay Kaushal, an assistant professor with the University of Maryland's Department of Geology and Earth System Science Interdisciplinary Center, describe urban watersheds as four dimensional eco-hydrologic entities that function in space and time. Much of that space is below ground, where thousands of miles of pipes, including storm, sewer and water pipes, are routing water in and out of buildings and ultimately between and across watersheds. How deep pipes are located, how much they leak and what they are leaking creates a complicated underground system that has great implications for above-ground stream ecosystems and the people who depend on them, according to Belt and Kaushal.

Time is also an important factor in a larger perspective on urban water. Urban watersheds experience tremendous change over time, both above ground and within their underground networks. Buildings and human activities change on the surface, and trees benefitting from leaked water grow and their root systems extend deep into the subsurface. Below ground, the huge network of pipes ages and changes as technologies and regulatory environments change. These watershed changes exert large effects on their receiving streams.

"The immense engineered urban water network has effectively expanded the natural drainage system of watersheds in ways that profoundly change the stream ecosystems they are connected to," Belt said.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation's forests and grasslands to meet the needs of present and future generations. The agency manages 193 million acres of public land, provides assistance to state and private landowners, and maintains the largest forestry research organization in the world. The mission of the Forest Service's Northern Research Station is to improve people's lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>