Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows benefits of Bt corn to farmers

08.10.2010
A group of agricultural scientists reported in today's issue of the journal Science that corn that has been genetically engineered to produce insect-killing proteins isolated from the soil bacterium Bacillus thuringiensis (Bt) provides significant economic benefits even to neighboring farmers who grow non-transgenic varieties of corn.

"Modern agricultural science is playing a critical role in addressing many of the toughest issues facing American agriculture today, including pest management and productivity," said Agriculture Secretary Tom Vilsack. "This study provides important information about the benefits of biotechnology by directly examining how area-wide suppression of corn borers using Bt corn can improve yield and grain quality even of non-Bt varieties."

The researchers estimate that farmers in Iowa, Illinois, Minnesota, Nebraska and Wisconsin received cumulative economic benefits of nearly $7 billion between 1996-2009, with benefits of more than $4 billion for non-Bt corn farmers alone. The scientists estimated that in Minnesota, Illinois and Wisconsin, borer populations in adjacent non-Bt fields declined by 28 to 73 percent, with similar reductions recorded in Iowa and Nebraska.

The researchers attribute the collateral benefits enjoyed by non-Bt farmers to areawide suppression of corn borers stemming from long-term plantings of Bt-protected crops. Potato, green bean and other host crops also stand to benefit from areawide reductions of corn borers, the researchers note. The team's Science report also highlights the importance of the use of refuge crops—the planting of non-Bt crops adjacent to fields of Bt crops, providing a refuge to which the pests can retreat—and other strategies to slow the corn borer's ability to develop resistance to Bt and thus maintain the insecticidal proteins' long-term effectiveness.

The Bt proteins provide the plant with a built-in defense against attacks by the larvae of European corn borers and other insect pests. Larvae that ingest the protein soon stop feeding and die, typically within 48 hours. In addition to reducing the use of insecticides that also can endanger beneficial insects, the Bt defense strategy helps prevent harmful molds from gaining entry to the plants via wound sites from borer feeding. Some of these molds, like Fusarium, produce mycotoxins that can diminish the value and safety of the crop's kernels.

Bt corn debuted in 1996, and by 2009 was planted on nearly 55 million acres in the United States, accounting for nearly 63 percent of the total U.S. corn crop of 87 million acres. But no research groups had previously investigated the long-term impact of such plantings on corn borer populations on a regional scale, nor had there been any assessment of whether the use of the crop provided any sort of collateral benefit to adjacent or nearby fields of non-Bt crops.

The team was led by William Hutchison of the University of Minnesota and included Rick Hellmich, a U.S. Department of Agriculture (USDA) entomologist at the Corn Insects and Crop Genetics Research Unit operated at Ames, Iowa, by the Agricultural Research Service (ARS). ARS is USDA's principal intramural scientific research agency. The team gathered 14 years' worth of corn borer population data from Bt corn plantings and combined it with national corn production figures, including yields, prices and acreage planted.

In addition to ARS and the University of Minnesota, study participants included researchers from the University of Wisconsin at Madison, Pennsylvania State University at State College, the University of Illinois at Urbana, the University of Nebraska at Lincoln, Iowa State University at Nashua, and industry researchers, among others.

USDA is an equal opportunity provider, employer and lender. To file a complaint of discrimination, write: USDA, Director, Office of Civil Rights, 1400 Independence Ave., S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice), or (202) 720-6382 (TDD).

Jan Suszkiw | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>