Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shines light on ways to cut costs for greenhouse growers

24.01.2012
Greenhouse bedding plant growers can save themselves time, money or possibly both by giving cuttings in propagation more light, according to a Purdue University study.

Flower growers use cuttings from Central America and Africa to start spring bedding plants in greenhouses during winter and early spring. Those cloudy days and cool temperatures make propagation time- and energy-intensive.

Roberto Lopez, an assistant professor of horticulture, and horticulture graduate students Chris Currey and Veronica Hutchinson study ways to minimize inputs and production costs in the floriculture industry while improving product quality. Based on what they were hearing from growers, they realized that light wasn't getting the attention it needed from the industry.

"In their minds, temperature has always been the most important thing. They didn't think about light," Lopez said. "We knew that light was significant, but we realize we didn't know what level to recommend."

Currey said growers were concerned that using too much light would stress the cuttings and disrupt root development.

"The dogma has been to keep light low, but that actually made the cuttings take longer to root," said Currey, whose findings were published in the January issue of the journal HortScience.
Currey, Hutchinson and Lopez propagated nine popular spring bedding plants under differing amounts of light for two weeks. They took a quality index used in forestry and modified it for bedding plants to assess the quality of the plants based on the light levels. They measured stem length, stem caliper, shoot dry mass and root dry mass.

Overall, plants rooted faster with more light and the plants were higher quality. Both factors could increase profits for greenhouse growers, Lopez said.

"With reduced production time, you can save on production costs or increase your crop production by starting another second crop that wouldn't have been possible with reduced light," Currey said. "That's increased profits through greenhouse space savings or energy savings, as well as through a higher quality product."

A copy of the paper, with more specific light requirements, can be viewed at https://sharepoint.agriculture.purdue.edu/agriculture/flowers/publications.aspx

Next, Lopez and Currey plan to study the morphological and physiological changes associated with light and cutting propagation, as well as how LED lights can be used to add supplemental daily light for cuttings.

The Fred C. Glockner Foundation, U.S. Department of Agriculture Specialty Crop Research Initiative and the Indiana Flower Growers Association funded this research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Roberto Lopez, 765-496-3425, rglopez@purdue.edu
Chris Currey, 765-496-3425, ccurrey@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>