Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shines light on ways to cut costs for greenhouse growers

24.01.2012
Greenhouse bedding plant growers can save themselves time, money or possibly both by giving cuttings in propagation more light, according to a Purdue University study.

Flower growers use cuttings from Central America and Africa to start spring bedding plants in greenhouses during winter and early spring. Those cloudy days and cool temperatures make propagation time- and energy-intensive.

Roberto Lopez, an assistant professor of horticulture, and horticulture graduate students Chris Currey and Veronica Hutchinson study ways to minimize inputs and production costs in the floriculture industry while improving product quality. Based on what they were hearing from growers, they realized that light wasn't getting the attention it needed from the industry.

"In their minds, temperature has always been the most important thing. They didn't think about light," Lopez said. "We knew that light was significant, but we realize we didn't know what level to recommend."

Currey said growers were concerned that using too much light would stress the cuttings and disrupt root development.

"The dogma has been to keep light low, but that actually made the cuttings take longer to root," said Currey, whose findings were published in the January issue of the journal HortScience.
Currey, Hutchinson and Lopez propagated nine popular spring bedding plants under differing amounts of light for two weeks. They took a quality index used in forestry and modified it for bedding plants to assess the quality of the plants based on the light levels. They measured stem length, stem caliper, shoot dry mass and root dry mass.

Overall, plants rooted faster with more light and the plants were higher quality. Both factors could increase profits for greenhouse growers, Lopez said.

"With reduced production time, you can save on production costs or increase your crop production by starting another second crop that wouldn't have been possible with reduced light," Currey said. "That's increased profits through greenhouse space savings or energy savings, as well as through a higher quality product."

A copy of the paper, with more specific light requirements, can be viewed at https://sharepoint.agriculture.purdue.edu/agriculture/flowers/publications.aspx

Next, Lopez and Currey plan to study the morphological and physiological changes associated with light and cutting propagation, as well as how LED lights can be used to add supplemental daily light for cuttings.

The Fred C. Glockner Foundation, U.S. Department of Agriculture Specialty Crop Research Initiative and the Indiana Flower Growers Association funded this research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Roberto Lopez, 765-496-3425, rglopez@purdue.edu
Chris Currey, 765-496-3425, ccurrey@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>