Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shines light on ways to cut costs for greenhouse growers

24.01.2012
Greenhouse bedding plant growers can save themselves time, money or possibly both by giving cuttings in propagation more light, according to a Purdue University study.

Flower growers use cuttings from Central America and Africa to start spring bedding plants in greenhouses during winter and early spring. Those cloudy days and cool temperatures make propagation time- and energy-intensive.

Roberto Lopez, an assistant professor of horticulture, and horticulture graduate students Chris Currey and Veronica Hutchinson study ways to minimize inputs and production costs in the floriculture industry while improving product quality. Based on what they were hearing from growers, they realized that light wasn't getting the attention it needed from the industry.

"In their minds, temperature has always been the most important thing. They didn't think about light," Lopez said. "We knew that light was significant, but we realize we didn't know what level to recommend."

Currey said growers were concerned that using too much light would stress the cuttings and disrupt root development.

"The dogma has been to keep light low, but that actually made the cuttings take longer to root," said Currey, whose findings were published in the January issue of the journal HortScience.
Currey, Hutchinson and Lopez propagated nine popular spring bedding plants under differing amounts of light for two weeks. They took a quality index used in forestry and modified it for bedding plants to assess the quality of the plants based on the light levels. They measured stem length, stem caliper, shoot dry mass and root dry mass.

Overall, plants rooted faster with more light and the plants were higher quality. Both factors could increase profits for greenhouse growers, Lopez said.

"With reduced production time, you can save on production costs or increase your crop production by starting another second crop that wouldn't have been possible with reduced light," Currey said. "That's increased profits through greenhouse space savings or energy savings, as well as through a higher quality product."

A copy of the paper, with more specific light requirements, can be viewed at https://sharepoint.agriculture.purdue.edu/agriculture/flowers/publications.aspx

Next, Lopez and Currey plan to study the morphological and physiological changes associated with light and cutting propagation, as well as how LED lights can be used to add supplemental daily light for cuttings.

The Fred C. Glockner Foundation, U.S. Department of Agriculture Specialty Crop Research Initiative and the Indiana Flower Growers Association funded this research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Roberto Lopez, 765-496-3425, rglopez@purdue.edu
Chris Currey, 765-496-3425, ccurrey@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>