Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Probes Sources of Mississippi River Phosphorus

In their eagerness to cut nitrogen and phosphorus pollution in the Mississippi River and Gulf of Mexico, people have often sought simple explanations for the problem: too many large animal operations, for instance, or farmers who apply too much fertilizer, which then flows into waterways.

But according to new modeling research that examined phosphorus loading from all 1768 counties in the Mississippi River Basin (MRB), the true causes aren’t nearly so straightforward. Livestock manure is widespread in many MRB counties, for example, but it shows little relationship to water quality, say researchers at the University of Illinois at Urbana-Champaign and Cornell University in the May-June 2011 issue of the Journal of Environmental Quality.

Moreover, areas that load the most phosphorus into the Mississippi are also places where farmers add less phosphorus to the soil than they remove each year in crop harvests, suggesting that overzealous fertilizer use is not the issue.

“If it were that, it would be easy to solve. But it’s not that,” says Mark David, a University of Illinois biogeochemist who led the research. “It’s much more complex. So I think in that sense addressing the problem is harder.”

Soil erosion and tile drainage contribute large amounts of phosphorus to the Mississippi and Gulf of Mexico each year, helping fuel a “dead zone” of oxygen-starved water in the Gulf that reached near-record size last summer. Local water quality may also decline due to phosphorus-driven algal blooms.

In an effort to pinpoint the most important sources of phosphorus across the entire MRB, David’s team calculated the yearly phosphorus inputs and outputs for every county in the basin from 1997 to 2006. After aggregating these and other data within 113 watersheds throughout the MRB, they then estimated the river load of phosphorus from every county between January and June for the same time period.

Not surprisingly, counties with intensive row crop agriculture, such as those in the Upper Midwest Corn Belt states of Iowa, Illinois and Ohio, contributed the most phosphorus to rivers. However, these same counties often showed negative phosphorus balances, meaning that phosphorus outputs in crops exceeded inputs by farmers.

In other words, farmers in these regions are actually mining stored phosphorus from the soil, rather than putting more into the system, David says. “But that negative balance doesn’t have much to do with the phosphorus that gets in the river.” Instead, the overall intensity of agriculture seems to matter most. “When I’m sitting here in Illinois in a watershed that’s 95% corn and soybeans, it’s going to lose some phosphorus,” he says, “whether the balance is negative or positive.”

In addition, although animal manure is considered a major phosphorus source to streams and rivers, it was relatively unimportant to phosphorus loading across the entire MRB. David suspects the reason is that most large-scale animal farms have moved to western states in the basin, such as Colorado, where there’s less precipitation to carry manure nutrients into the Mississippi.

Phosphorus from human waste did prove significant. Counties encompassing Chicago and other major metropolitan areas “showed up as hot spots,” David says, because most municipalities don’t remove phosphorus from the otherwise clean sewage effluent they discharge into streams. The team further found that about half of the variation in phosphorus loadings was not explained by their models, suggesting that other factors also contribute, such as stream bank erosion and phosphorus deposits in river sediments.

Overall, the findings suggest that reducing phosphorus pollution will require broad adoption of practices that limit nutrient runoff, such as cover crops, buffer strips, and incorporation of fertilizers. It will also require limits on phosphorus discharge from cities.

Achieving these objectives across the entire MRB won’t be easy, but David hopes the study helps people move beyond common assumptions about causes to focus on the real issues.

“To me the value of the study is that it helps shift the debate,” David says. “The problem is not as simple as two things. It’s not as simple as too much fertilizer or manure.”

The research was funded by the National Science Foundation’s Biocomplexity in the Environment/Coupled Natural-Human Cycles Program.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>