Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Probes Sources of Mississippi River Phosphorus

09.05.2011
In their eagerness to cut nitrogen and phosphorus pollution in the Mississippi River and Gulf of Mexico, people have often sought simple explanations for the problem: too many large animal operations, for instance, or farmers who apply too much fertilizer, which then flows into waterways.

But according to new modeling research that examined phosphorus loading from all 1768 counties in the Mississippi River Basin (MRB), the true causes aren’t nearly so straightforward. Livestock manure is widespread in many MRB counties, for example, but it shows little relationship to water quality, say researchers at the University of Illinois at Urbana-Champaign and Cornell University in the May-June 2011 issue of the Journal of Environmental Quality.

Moreover, areas that load the most phosphorus into the Mississippi are also places where farmers add less phosphorus to the soil than they remove each year in crop harvests, suggesting that overzealous fertilizer use is not the issue.

“If it were that, it would be easy to solve. But it’s not that,” says Mark David, a University of Illinois biogeochemist who led the research. “It’s much more complex. So I think in that sense addressing the problem is harder.”

Soil erosion and tile drainage contribute large amounts of phosphorus to the Mississippi and Gulf of Mexico each year, helping fuel a “dead zone” of oxygen-starved water in the Gulf that reached near-record size last summer. Local water quality may also decline due to phosphorus-driven algal blooms.

In an effort to pinpoint the most important sources of phosphorus across the entire MRB, David’s team calculated the yearly phosphorus inputs and outputs for every county in the basin from 1997 to 2006. After aggregating these and other data within 113 watersheds throughout the MRB, they then estimated the river load of phosphorus from every county between January and June for the same time period.

Not surprisingly, counties with intensive row crop agriculture, such as those in the Upper Midwest Corn Belt states of Iowa, Illinois and Ohio, contributed the most phosphorus to rivers. However, these same counties often showed negative phosphorus balances, meaning that phosphorus outputs in crops exceeded inputs by farmers.

In other words, farmers in these regions are actually mining stored phosphorus from the soil, rather than putting more into the system, David says. “But that negative balance doesn’t have much to do with the phosphorus that gets in the river.” Instead, the overall intensity of agriculture seems to matter most. “When I’m sitting here in Illinois in a watershed that’s 95% corn and soybeans, it’s going to lose some phosphorus,” he says, “whether the balance is negative or positive.”

In addition, although animal manure is considered a major phosphorus source to streams and rivers, it was relatively unimportant to phosphorus loading across the entire MRB. David suspects the reason is that most large-scale animal farms have moved to western states in the basin, such as Colorado, where there’s less precipitation to carry manure nutrients into the Mississippi.

Phosphorus from human waste did prove significant. Counties encompassing Chicago and other major metropolitan areas “showed up as hot spots,” David says, because most municipalities don’t remove phosphorus from the otherwise clean sewage effluent they discharge into streams. The team further found that about half of the variation in phosphorus loadings was not explained by their models, suggesting that other factors also contribute, such as stream bank erosion and phosphorus deposits in river sediments.

Overall, the findings suggest that reducing phosphorus pollution will require broad adoption of practices that limit nutrient runoff, such as cover crops, buffer strips, and incorporation of fertilizers. It will also require limits on phosphorus discharge from cities.

Achieving these objectives across the entire MRB won’t be easy, but David hopes the study helps people move beyond common assumptions about causes to focus on the real issues.

“To me the value of the study is that it helps shift the debate,” David says. “The problem is not as simple as two things. It’s not as simple as too much fertilizer or manure.”

The research was funded by the National Science Foundation’s Biocomplexity in the Environment/Coupled Natural-Human Cycles Program.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/3/931.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>