Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study predicts an uncertain future for forests

17.09.2009
The composition of some of our nation's forests may be quite different 200 to 400 years from today according to a recent study at the University of Illinois. The study found that temperature and photosynthetic active radiation were the two most important variables in predicting what forest landscapes may look like in the future. The uncertainties became very high after the year 2200.

Approximately 100,000 acres of forested area west of Lake Superior which make up the Boundary Waters Canoe Area was used for the study. Using computer models PnET-II and LANDIS-II, the researchers were able to simulate 209 possible scenarios, including 13 tree species and 27 possible climate profiles to predict how the landscape will look over time.

"The tools that we developed and we're using for the research project can be applied to any discipline dealing with risk and uncertainty in decision making," said U of I researcher George Gertner.

"We were dealing with the uncertainties in global change predictions using the projections established by the United Nations Intergovernmental Panel of Climate Change. These projections were based on different CO 2 reduction scenarios and global circulation models. "

The study found that the most important source of uncertainty in the forest composition prediction is from the uncertainty in temperature predictions. The second most important source is photosynthetic active radiation, the third is carbon dioxide, and the fourth is precipitation.

"The Boundary Waters Area is significant because it's a transitional area between boreal forests – like those in Canada, Russia, Sweden, and Norway – and temporal forests," Gertner said. "So, if there are changes in the climate you'll see the changes – if it gets warmer, the temporal forests will move north. Because of its proximity to Lake Superior, rainfall is not so critical there. It's very moist. So, if you were to do a similar sort of study, say, in Illinois, temperature may not cause so much uncertainty; rainfall might."

The research was done by a team consisting of George Gertner, a statistician and quantitative ecologist; Chonggang Xu, his Ph.D. student; and Robert Scheller, a landscape ecologist at the Conservation Biology Institute in Corvallis, Oregon. They drew from the disciplines of statistics and ecology to interpret the data collected to predict the future of the forest landscape.

"You have to have an understanding of the biology, physiology, as well as statistics as it relates to uncertainty. If you don't, then the results might not mean anything. You have to be able to interpret everything and make sure it all makes sense. "

Gertner explained that in traditional uncertainty analysis, the variables are considered to be independent of one another.

"But in reality, they are all interrelated. We try to account for the actual correlation of these inputs – these relationships. And that's where the methodology is new, because of that."

The relationships of the variables are more complicated than just raising the temperature and lowering the amount of rainfall. "One scenario might be if we establish a policy to reduce CO 2 greenhouse gas emissions by a certain level," Gertner said.

"If we have agencies around the world who adopt these policies to make these reductions, over time the scenarios predict what will happen, but with uncertainty."

The question is what to do about it? How to adapt? How to manage the forest for global change?

"The bottom line is that we have to have very robust systems that can handle this variability. It can't be rigid. If we have robust systems, whatever happens, it can handle it. Sustainability comes into play in the robustness. You try to manage those areas by having more diversity, not monocultures."

Gertner said that management can be easier with agricultural systems. "Over short intervals you can adapt very quickly. You can make big changes very quickly, but with a forest, the lifespan is 100, 200 years, so once you do something it's longer term. We need to be making policies now that will affect our forests hundreds of years from now."

Uncertainties in the response of a forest landscape to global climatic change is published in Global Change Biology 2009.

Funding was provided by U.S. Department of Agriculture McIntire-Stennis funds and U.S. Army Corps of Engineers Construction Engineering Research Laboratory funds.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>