Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study predicts an uncertain future for forests

17.09.2009
The composition of some of our nation's forests may be quite different 200 to 400 years from today according to a recent study at the University of Illinois. The study found that temperature and photosynthetic active radiation were the two most important variables in predicting what forest landscapes may look like in the future. The uncertainties became very high after the year 2200.

Approximately 100,000 acres of forested area west of Lake Superior which make up the Boundary Waters Canoe Area was used for the study. Using computer models PnET-II and LANDIS-II, the researchers were able to simulate 209 possible scenarios, including 13 tree species and 27 possible climate profiles to predict how the landscape will look over time.

"The tools that we developed and we're using for the research project can be applied to any discipline dealing with risk and uncertainty in decision making," said U of I researcher George Gertner.

"We were dealing with the uncertainties in global change predictions using the projections established by the United Nations Intergovernmental Panel of Climate Change. These projections were based on different CO 2 reduction scenarios and global circulation models. "

The study found that the most important source of uncertainty in the forest composition prediction is from the uncertainty in temperature predictions. The second most important source is photosynthetic active radiation, the third is carbon dioxide, and the fourth is precipitation.

"The Boundary Waters Area is significant because it's a transitional area between boreal forests – like those in Canada, Russia, Sweden, and Norway – and temporal forests," Gertner said. "So, if there are changes in the climate you'll see the changes – if it gets warmer, the temporal forests will move north. Because of its proximity to Lake Superior, rainfall is not so critical there. It's very moist. So, if you were to do a similar sort of study, say, in Illinois, temperature may not cause so much uncertainty; rainfall might."

The research was done by a team consisting of George Gertner, a statistician and quantitative ecologist; Chonggang Xu, his Ph.D. student; and Robert Scheller, a landscape ecologist at the Conservation Biology Institute in Corvallis, Oregon. They drew from the disciplines of statistics and ecology to interpret the data collected to predict the future of the forest landscape.

"You have to have an understanding of the biology, physiology, as well as statistics as it relates to uncertainty. If you don't, then the results might not mean anything. You have to be able to interpret everything and make sure it all makes sense. "

Gertner explained that in traditional uncertainty analysis, the variables are considered to be independent of one another.

"But in reality, they are all interrelated. We try to account for the actual correlation of these inputs – these relationships. And that's where the methodology is new, because of that."

The relationships of the variables are more complicated than just raising the temperature and lowering the amount of rainfall. "One scenario might be if we establish a policy to reduce CO 2 greenhouse gas emissions by a certain level," Gertner said.

"If we have agencies around the world who adopt these policies to make these reductions, over time the scenarios predict what will happen, but with uncertainty."

The question is what to do about it? How to adapt? How to manage the forest for global change?

"The bottom line is that we have to have very robust systems that can handle this variability. It can't be rigid. If we have robust systems, whatever happens, it can handle it. Sustainability comes into play in the robustness. You try to manage those areas by having more diversity, not monocultures."

Gertner said that management can be easier with agricultural systems. "Over short intervals you can adapt very quickly. You can make big changes very quickly, but with a forest, the lifespan is 100, 200 years, so once you do something it's longer term. We need to be making policies now that will affect our forests hundreds of years from now."

Uncertainties in the response of a forest landscape to global climatic change is published in Global Change Biology 2009.

Funding was provided by U.S. Department of Agriculture McIntire-Stennis funds and U.S. Army Corps of Engineers Construction Engineering Research Laboratory funds.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>