Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Links Pesticides, Declining Frog Population

14.08.2009
Researchers discover that the same chemicals that make California's Central Valley so successful as a farming area also make the nearby Sierra Mountains deadly for frogs.

Don Sparling, associate professor of zoology at Southern Illinois University Carbondale, tapped a few grains of salt from a shaker of into his hand, demonstrating how little pesticide it takes to kill off a population of frogs.

“This would be enough to make about 250, 8-liter doses,” the researcher said, referring to no more than a dozen grains of salt in his palm. “And this would be enough to kill every frog in there.”

Researchers have known since the mid 1990s that amphibian populations around the world are declining. Loss of habitat -- up to 95 percent of wetlands have been drained for the “corn desert” in states such as Iowa and Illinois -- and a virulent fungus, known as chytrid, are two big reasons. But a third reason, the one Sparling investigates, involves contaminants such as pesticides.

Sparling has been involved with the issue for years. The second edition of his textbook and reference, “Ecotoxicology of Amphibians and Reptiles,” is due out early next year. His most recent study was published in the August edition of “Environmental Toxicology and Chemistry.”

Sparling, along with other researchers, recently discovered that the same chemicals that make California’s Central Valley so successful as a farming area also make the nearby Sierra Mountains deadly for frogs. Specifically, the study looked at Pacific tree frogs and foothill yellow-legged frogs, both of which are native to the mountain meadows and are declining in population.

Sparling and the team found neurotoxin pesticides are finding their way up out of the valley and into the snow and eventually the streams where the frogs live and breed.

And the results are devastating.

Using laboratories at SIUC, Sparling and his graduate students found that as little as 0.3 parts per billion of endosulfan -- the active ingredient in many pesticides -- in water is enough to kill half of the frogs living in it.

“At 0.8 parts per billion, we lose all of them,” Sparling said, referring to the tiny amount of salt in his hand. “We always thought there was an association between pesticides and declining amphibian populations, and we’re building up a body of evidence to show this is the case.”

Sparling’s research studies the effects of “environmentally realistic” amounts of pesticides on amphibians, such as frogs. California’s Central Valley, with its great diversity of farming and heavy use of chemicals, along with its nearby mountains and declining amphibian populations, provided the perfect opportunity.

“The Central Valley is an extremely intense agriculture area, with everything from grapes to peaches, to nuts and tomatoes grown there,” Sparling said. “Along with that, you have literally hundreds of thousands of pounds of active-ingredient pesticides, this is before it’s diluted, applied each year in this area.”

Sparling and his colleagues looked at whether the pesticides were involved in the amphibian population declines there. A main question they faced involved finding out how the chemicals worked their way up out of the valley and up into the Sierras.

Using sampling techniques, the team found the chemicals were indeed making their way into the frogs’ environment, most likely by wind.

“These pesticides are applied by airplanes and we found that the wind would blow some of it up into the mountains, for instance,” Sparling said. “In other cases, these chemicals would volatize after being applied, turning into a gaseous state, which could also be picked up and spread into the mountains by wind.”

Timing was also a major factor in the damage caused by the chemicals.

Chemicals applied in late winter and early spring would find their way into snows packed in the cooler mountain region. As the snow melted each year, the chemical released into the streams just as frogs begin to breed.

“As soon as ice is out of those streams, frogs start breeding,” Sparling said. “The newly hatched frog larvae are at their most vulnerable right at this time, when the chemicals are getting into the water.”

Chemical exposure causes death and abnormalities in the tadpoles, in some cases causing their signature long tail to develop off-center, resulting in an animal capable of swimming only in a tight circular “corkscrew” pattern that makes it easy pickings for a hungry fish. It also causes drastic differences in the rate of growth and other problems.

“The sub-lethal effects of chemicals are probably even more important than outright killing,” in terms of affecting the population, he said. “It’s more insidious.” Contamination levels far below the lethal range may cause such effects.

The foothill yellow-legged frog is especially susceptible to the chemicals such as endosulfans, which kill by essentially overloading the nervous system and rendering breathing muscles useless. Europe and Australia each have banned the use of the chemical as a pesticide, and the U.S. Environmental Protection Agency also is studying the issue, Sparling said.

Sparling is optimistic humans can find ways to both farm on a large enough scale to feed the population and protect non-pest animals.

“To produce crops to provide for the world we have to use pesticides, and I’m not anti-pesticide,” he said. “But it’s important for us as scientists, agriculturalists and environmental protectors to make sure we continue developing pesticides that are as protective as possible of non-target animals as can be, both in the chemicals we use and application methods.”

Sparling continues working on the issue, helping graduate students examine the effects of the interaction of the chemicals -- the cocktail neurotoxins -- on frog populations, looking at whether they interfere with one another, synergize or have an additive effect. He also is looking at the effect of each chemical on the mountain yellow-legged frog, a relative of the foothill yellow-legged frog that lives at higher elevations.

Monitoring the frog populations’ health is critical to humans as they seek to protect the environment from unintended consequences.

“Frogs are like the canary in the coal mine. They serve as early alarms for the environment,” Sparling said. “They also provide a large and important link between the aquatic and terrestrial environments. If amphibians go, a huge link will be gone.”

Tim Crosby | Newswise Science News
Further information:
http://www.siu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>