Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Links Pesticides, Declining Frog Population

14.08.2009
Researchers discover that the same chemicals that make California's Central Valley so successful as a farming area also make the nearby Sierra Mountains deadly for frogs.

Don Sparling, associate professor of zoology at Southern Illinois University Carbondale, tapped a few grains of salt from a shaker of into his hand, demonstrating how little pesticide it takes to kill off a population of frogs.

“This would be enough to make about 250, 8-liter doses,” the researcher said, referring to no more than a dozen grains of salt in his palm. “And this would be enough to kill every frog in there.”

Researchers have known since the mid 1990s that amphibian populations around the world are declining. Loss of habitat -- up to 95 percent of wetlands have been drained for the “corn desert” in states such as Iowa and Illinois -- and a virulent fungus, known as chytrid, are two big reasons. But a third reason, the one Sparling investigates, involves contaminants such as pesticides.

Sparling has been involved with the issue for years. The second edition of his textbook and reference, “Ecotoxicology of Amphibians and Reptiles,” is due out early next year. His most recent study was published in the August edition of “Environmental Toxicology and Chemistry.”

Sparling, along with other researchers, recently discovered that the same chemicals that make California’s Central Valley so successful as a farming area also make the nearby Sierra Mountains deadly for frogs. Specifically, the study looked at Pacific tree frogs and foothill yellow-legged frogs, both of which are native to the mountain meadows and are declining in population.

Sparling and the team found neurotoxin pesticides are finding their way up out of the valley and into the snow and eventually the streams where the frogs live and breed.

And the results are devastating.

Using laboratories at SIUC, Sparling and his graduate students found that as little as 0.3 parts per billion of endosulfan -- the active ingredient in many pesticides -- in water is enough to kill half of the frogs living in it.

“At 0.8 parts per billion, we lose all of them,” Sparling said, referring to the tiny amount of salt in his hand. “We always thought there was an association between pesticides and declining amphibian populations, and we’re building up a body of evidence to show this is the case.”

Sparling’s research studies the effects of “environmentally realistic” amounts of pesticides on amphibians, such as frogs. California’s Central Valley, with its great diversity of farming and heavy use of chemicals, along with its nearby mountains and declining amphibian populations, provided the perfect opportunity.

“The Central Valley is an extremely intense agriculture area, with everything from grapes to peaches, to nuts and tomatoes grown there,” Sparling said. “Along with that, you have literally hundreds of thousands of pounds of active-ingredient pesticides, this is before it’s diluted, applied each year in this area.”

Sparling and his colleagues looked at whether the pesticides were involved in the amphibian population declines there. A main question they faced involved finding out how the chemicals worked their way up out of the valley and up into the Sierras.

Using sampling techniques, the team found the chemicals were indeed making their way into the frogs’ environment, most likely by wind.

“These pesticides are applied by airplanes and we found that the wind would blow some of it up into the mountains, for instance,” Sparling said. “In other cases, these chemicals would volatize after being applied, turning into a gaseous state, which could also be picked up and spread into the mountains by wind.”

Timing was also a major factor in the damage caused by the chemicals.

Chemicals applied in late winter and early spring would find their way into snows packed in the cooler mountain region. As the snow melted each year, the chemical released into the streams just as frogs begin to breed.

“As soon as ice is out of those streams, frogs start breeding,” Sparling said. “The newly hatched frog larvae are at their most vulnerable right at this time, when the chemicals are getting into the water.”

Chemical exposure causes death and abnormalities in the tadpoles, in some cases causing their signature long tail to develop off-center, resulting in an animal capable of swimming only in a tight circular “corkscrew” pattern that makes it easy pickings for a hungry fish. It also causes drastic differences in the rate of growth and other problems.

“The sub-lethal effects of chemicals are probably even more important than outright killing,” in terms of affecting the population, he said. “It’s more insidious.” Contamination levels far below the lethal range may cause such effects.

The foothill yellow-legged frog is especially susceptible to the chemicals such as endosulfans, which kill by essentially overloading the nervous system and rendering breathing muscles useless. Europe and Australia each have banned the use of the chemical as a pesticide, and the U.S. Environmental Protection Agency also is studying the issue, Sparling said.

Sparling is optimistic humans can find ways to both farm on a large enough scale to feed the population and protect non-pest animals.

“To produce crops to provide for the world we have to use pesticides, and I’m not anti-pesticide,” he said. “But it’s important for us as scientists, agriculturalists and environmental protectors to make sure we continue developing pesticides that are as protective as possible of non-target animals as can be, both in the chemicals we use and application methods.”

Sparling continues working on the issue, helping graduate students examine the effects of the interaction of the chemicals -- the cocktail neurotoxins -- on frog populations, looking at whether they interfere with one another, synergize or have an additive effect. He also is looking at the effect of each chemical on the mountain yellow-legged frog, a relative of the foothill yellow-legged frog that lives at higher elevations.

Monitoring the frog populations’ health is critical to humans as they seek to protect the environment from unintended consequences.

“Frogs are like the canary in the coal mine. They serve as early alarms for the environment,” Sparling said. “They also provide a large and important link between the aquatic and terrestrial environments. If amphibians go, a huge link will be gone.”

Tim Crosby | Newswise Science News
Further information:
http://www.siu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>