Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study helps assess impact of temperature on belowground soil decomposition

24.09.2014

The Earth’s soils store four times more carbon than the atmosphere and small changes in soil carbon storage can have a big effect on atmospheric greenhouse gas concentrations. A new paper in the journal Nature Climate Change concludes that climate warming does not accelerate soil organic carbon decomposition or affect soil carbon storage, despite increases in ecosystem productivity.

The research, led by U.S. Forest Service Research Ecologist Dr. Christian Giardina, with the agency’s Institute of Pacific Islands Forestry, Pacific Southwest Research Station, with co-authors Drs. Creighton Litton and Susan Crow (University of Hawai`i at Manoa), and Dr. Greg Asner (Carnegie Institution for Science), shows that soil carbon storage was constant across a highly constrained 5 degrees Celsius gradient of mean annual temperature in tropical montane wet forest in Hawai`i.

The scientists also showed an increase in productivity across the gradient, both above and belowground, and an increase in the decomposition rate of fresh litter and a decline in coarse woody debris with warming. From these results, they concluded that long-term warming in tropical montane forests will accelerate carbon cycling, but is unlikely to cause net losses of soil carbon.

“Given our findings, we expect that warming alone, that is in the absence of other changes such as drying or increased fire, will not accelerate the loss of carbon from mineral soils,” says Giardina. “This means that tropical soils will not become a net source of CO2 to the atmosphere.”

The effects of warming on soil carbon storage are poorly quantified because it is difficult to assess how temperature change impacts processes below the soil surface. However, the temperature gradient used in this study provides an ideal study system for measuring ecosystem responses to warming over long periods of time. The scientists were careful to find a gradient of temperature change where potentially confounding factors were held constant, including vegetation composition, disturbance history, geology, and soil type and moisture. This allowed them to isolate the effects of changing temperature on ecosystem carbon storage and flux.

The scientists propose that where ecosystem carbon is unprotected, such as at the surface in plant debris, its decomposition and storage will respond strongly to warming. However, when carbon is protected in the soil, decomposer organisms have reduced access to that carbon and so decomposition or storage show little temperature sensitivity. And while climate warming will continue with the addition of greenhouse gases into the atmosphere due to human activities (fossil fuel combustion, land-use clearing), previous assumptions about a positive soil carbon cycling feedback to future warming may be incorrect.

While soil carbon storage and turnover was insensitive to warming, the decomposition of coarse wood and plant growth did increase, which means that the capacity of tropical ecosystems to retain carbon will depend on the balance of changes within each ecosystem.

To read the paper: http://www.treesearch.fs.fed.us/pubs/46423

Headquartered in Albany, Calif., the Pacific Southwest Research Station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has research facilities in California, Hawaii and the U.S.–affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw/.

Sherri Eng | Eurek Alert!
Further information:
http://www.fs.fed.us/psw/news/2014/20140923_soil_decomposition.shtml

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>