Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds higher pathogen loads in collapsed honeybee colonies

Honeybees in colonies affected by colony collapse disorder (CCD) have higher levels of pathogens and are co-infected with a greater number of pathogens than their non-CCD counterparts, but no individual pathogen can be singled out as the cause of CCD, according to a study by an international team of researchers.

The researchers, who represented Penn State's College of Agricultural Sciences, University of Liege, Gembloux Agricultural University, North Carolina State University and the U.S. Department of Agriculture's Agricultural Research Service (ARS), collected samples of adult bees, wax comb, pollen and brood – developing larvae – from 91 colonies in 13 apiaries in Florida and California and quantified more than 200 variables, including the presence of parasites such as varroa and tracheal mites; infection by bacteria, viruses and fungi; pesticide levels; nutritional factors; and bee physiology. No single factor was found consistently only in those colonies suffering from CCD.

The study's findings, which were published in the online journal PLoS ONE, illustrate the complexity of solving the CCD problem, according to lead author and Penn State entomologist Dennis vanEngelsdorp. "Our results suggest that this condition may be contagious or the result of exposure to a common risk factor that impairs the bees' immune systems, making them more susceptible to pathogens," said vanEngelsdorp, who also is acting state apiarist for the Pennsylvania Department of Agriculture.

VanEngelsdorp noted that higher pathogen loads are likely to have caused CCD symptoms, but what causes the bees to become infected with so many pathogens is still not known. "Although pathogens seem likely to play a critical role in CCD, that role may be secondary, much like AIDS patients die from secondary diseases," he added.

No one of the screened pathogens had a higher prevalence in colonies that had CCD. There also was no significant difference in the prevalence nor in the total load of varroa or tracheal mites and Nosema, a protozoan that causes disease in bees.

But overall, CCD colonies were co-infected with a greater number of pathogens -- viruses, bacteria and microparasites such as Nosema. For instance, 55 percent of CCD colonies were infected with three or more viruses compared to 28 percent of non-CCD colonies.

The researchers also found detectable levels of residues from 50 different pesticides in all of the sampled colonies, but there was no association between increased pesticide levels and CCD.

In fact, the pyrethroid insecticide Esfenvalerate -- used for a wide variety of pests such as moths, flies, beetles and other insects on vegetable, fruit and nut crops -- was more prevalent in the wax in non-CCD colonies, being found in 32 percent of non-CCD colonies compared to 5 percent of the CCD colonies.

Coumaphos, which is used to treat varroa mites in honeybees, also was found in higher levels in non-CCD colonies.

Entomologist Jeff Pettis with the ARS Bee Research Laboratory in Beltsville, Md., said the study suggests that future research should focus on monitoring parasite, pathogen and pesticide loads, as well as potential interactions among pesticide and pathogen loads. "While the study's results don't indicate a specific cause of CCD, the results do help scientists narrow the direction of future CCD research by showing that some possible causes are less likely," said Pettis.

Study co-authors from Penn State are included Chris Mullin, professor of entomology; Maryann Frazier, senior extension associate in entomology; Jim Frazier, professor of entomology; and Diana Cox-Foster, professor of entomology and Robyn Underwood.

Other researchers included Jay D. Evans and Yanping Chen, ARS; Claude Saegerman, University of Liege; Eric Haubruge and Bach Kim Nguyen, Gembloux Agricultural University, Belgium and David R. Tarpy, North Carolina State University.

Chuck Gill | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>