Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds higher pathogen loads in collapsed honeybee colonies

18.08.2009
Honeybees in colonies affected by colony collapse disorder (CCD) have higher levels of pathogens and are co-infected with a greater number of pathogens than their non-CCD counterparts, but no individual pathogen can be singled out as the cause of CCD, according to a study by an international team of researchers.

The researchers, who represented Penn State's College of Agricultural Sciences, University of Liege, Gembloux Agricultural University, North Carolina State University and the U.S. Department of Agriculture's Agricultural Research Service (ARS), collected samples of adult bees, wax comb, pollen and brood – developing larvae – from 91 colonies in 13 apiaries in Florida and California and quantified more than 200 variables, including the presence of parasites such as varroa and tracheal mites; infection by bacteria, viruses and fungi; pesticide levels; nutritional factors; and bee physiology. No single factor was found consistently only in those colonies suffering from CCD.

The study's findings, which were published in the online journal PLoS ONE, illustrate the complexity of solving the CCD problem, according to lead author and Penn State entomologist Dennis vanEngelsdorp. "Our results suggest that this condition may be contagious or the result of exposure to a common risk factor that impairs the bees' immune systems, making them more susceptible to pathogens," said vanEngelsdorp, who also is acting state apiarist for the Pennsylvania Department of Agriculture.

VanEngelsdorp noted that higher pathogen loads are likely to have caused CCD symptoms, but what causes the bees to become infected with so many pathogens is still not known. "Although pathogens seem likely to play a critical role in CCD, that role may be secondary, much like AIDS patients die from secondary diseases," he added.

No one of the screened pathogens had a higher prevalence in colonies that had CCD. There also was no significant difference in the prevalence nor in the total load of varroa or tracheal mites and Nosema, a protozoan that causes disease in bees.

But overall, CCD colonies were co-infected with a greater number of pathogens -- viruses, bacteria and microparasites such as Nosema. For instance, 55 percent of CCD colonies were infected with three or more viruses compared to 28 percent of non-CCD colonies.

The researchers also found detectable levels of residues from 50 different pesticides in all of the sampled colonies, but there was no association between increased pesticide levels and CCD.

In fact, the pyrethroid insecticide Esfenvalerate -- used for a wide variety of pests such as moths, flies, beetles and other insects on vegetable, fruit and nut crops -- was more prevalent in the wax in non-CCD colonies, being found in 32 percent of non-CCD colonies compared to 5 percent of the CCD colonies.

Coumaphos, which is used to treat varroa mites in honeybees, also was found in higher levels in non-CCD colonies.

Entomologist Jeff Pettis with the ARS Bee Research Laboratory in Beltsville, Md., said the study suggests that future research should focus on monitoring parasite, pathogen and pesticide loads, as well as potential interactions among pesticide and pathogen loads. "While the study's results don't indicate a specific cause of CCD, the results do help scientists narrow the direction of future CCD research by showing that some possible causes are less likely," said Pettis.

Study co-authors from Penn State are included Chris Mullin, professor of entomology; Maryann Frazier, senior extension associate in entomology; Jim Frazier, professor of entomology; and Diana Cox-Foster, professor of entomology and Robyn Underwood.

Other researchers included Jay D. Evans and Yanping Chen, ARS; Claude Saegerman, University of Liege; Eric Haubruge and Bach Kim Nguyen, Gembloux Agricultural University, Belgium and David R. Tarpy, North Carolina State University.

Chuck Gill | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>