Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds crop performance matters when evaluating greenhouse gas emissions

06.09.2011
Measuring the emission of greenhouse gases from croplands should take into account the crops themselves.

That's the conclusion of a study in the Sept.-Oct. issue of the Journal of Environmental Quality, which examined the impact of farm practices such as tillage on the greenhouse gas, nitrous oxide. Expressing emissions per unit of crop yield rather than on a more conventional per area basis produced very different results, says the study's leader, Rod Venterea, research soil scientist with the United States Department of Agriculture's Agricultural Research Service.

In particular, his team found that total nitrous oxide emissions were not significantly affected by tillage practices when expressed on an area basis. When they were calculated per unit yield of grain, however, emissions were significantly greater under no-tillage compared with conventional tillage. A byproduct of many agricultural systems, nitrous oxide is a potent greenhouse gas (GHG) with a heat-trapping potential more than 300 times that of carbon dioxide.

The findings have important implications for how the greenhouse gases generated by agriculture are reported, evaluated, and potentially mitigated. Nitrous oxide emissions were slighter higher under no-till on a per area basis in the study, Venterea explains, but not high enough to differ statistically from those under conventional tillage. "But when we added in the fact that no-tillage also reduced yields, the effect of tillage did become significant," he says. "The point is that you need to look at both nitrous oxide emissions and yield together."

While previous studies have shown that practices like fertilizer and tillage management can affect nitrous oxide emissions, relatively few have reported the effects of these practices on crop performance at the same time. In addition, GHG emissions are commonly expressed with respect to area of field: for example, kilogram nitrous oxide emitted per hectare. Recent research has suggested that expressing GHG emissions per unit of yield may be more meaningful, although few studies have actually done that.

To see how yield-scaled calculations might change the picture on emissions, USDA-ARS researchers in collaboration with University of Minnesota colleagues measured the effects of tillage and nitrogen (N) fertilizer management on nitrous oxide emissions, grain yields, and crop N uptake over three consecutive growing seasons in Minnesota. The experiment was conducted in research plots used for corn and soybean production, which were maintained under either no-till or conventional tillage for 18 years.

When the scientists calculated nitrous oxide emissions per unit yield of grain or grain N, they found that emissions under no-tillage were 52 and 66% higher, respectively, than with conventional tillage. In other words, for this cropping system and climate, Venterea says, no-till practices would generate substantially more nitrous oxide than would conventional tillage for the same amount of grain. The effect was due to lower yields under no-till, combined with slightly greater area-scaled nitrous oxide emissions.

Reduced yields under continuous no-till management in parts of the upper Midwest and other regions have been attributed to lower soil temperatures in spring, which may inhibit plant development. In other geographic regions, though, no-till can actually increase yields.

"So, for these other regions, expressing GHG emissions on a yield-basis could reveal benefits to no-till management that otherwise might not be quantified," Venterea says.

The study was funded by the USDA National Institute for Food and Agriculture (NIFA) and the Foundation for Agronomic Research.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/5/1521.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>