Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds crop performance matters when evaluating greenhouse gas emissions

06.09.2011
Measuring the emission of greenhouse gases from croplands should take into account the crops themselves.

That's the conclusion of a study in the Sept.-Oct. issue of the Journal of Environmental Quality, which examined the impact of farm practices such as tillage on the greenhouse gas, nitrous oxide. Expressing emissions per unit of crop yield rather than on a more conventional per area basis produced very different results, says the study's leader, Rod Venterea, research soil scientist with the United States Department of Agriculture's Agricultural Research Service.

In particular, his team found that total nitrous oxide emissions were not significantly affected by tillage practices when expressed on an area basis. When they were calculated per unit yield of grain, however, emissions were significantly greater under no-tillage compared with conventional tillage. A byproduct of many agricultural systems, nitrous oxide is a potent greenhouse gas (GHG) with a heat-trapping potential more than 300 times that of carbon dioxide.

The findings have important implications for how the greenhouse gases generated by agriculture are reported, evaluated, and potentially mitigated. Nitrous oxide emissions were slighter higher under no-till on a per area basis in the study, Venterea explains, but not high enough to differ statistically from those under conventional tillage. "But when we added in the fact that no-tillage also reduced yields, the effect of tillage did become significant," he says. "The point is that you need to look at both nitrous oxide emissions and yield together."

While previous studies have shown that practices like fertilizer and tillage management can affect nitrous oxide emissions, relatively few have reported the effects of these practices on crop performance at the same time. In addition, GHG emissions are commonly expressed with respect to area of field: for example, kilogram nitrous oxide emitted per hectare. Recent research has suggested that expressing GHG emissions per unit of yield may be more meaningful, although few studies have actually done that.

To see how yield-scaled calculations might change the picture on emissions, USDA-ARS researchers in collaboration with University of Minnesota colleagues measured the effects of tillage and nitrogen (N) fertilizer management on nitrous oxide emissions, grain yields, and crop N uptake over three consecutive growing seasons in Minnesota. The experiment was conducted in research plots used for corn and soybean production, which were maintained under either no-till or conventional tillage for 18 years.

When the scientists calculated nitrous oxide emissions per unit yield of grain or grain N, they found that emissions under no-tillage were 52 and 66% higher, respectively, than with conventional tillage. In other words, for this cropping system and climate, Venterea says, no-till practices would generate substantially more nitrous oxide than would conventional tillage for the same amount of grain. The effect was due to lower yields under no-till, combined with slightly greater area-scaled nitrous oxide emissions.

Reduced yields under continuous no-till management in parts of the upper Midwest and other regions have been attributed to lower soil temperatures in spring, which may inhibit plant development. In other geographic regions, though, no-till can actually increase yields.

"So, for these other regions, expressing GHG emissions on a yield-basis could reveal benefits to no-till management that otherwise might not be quantified," Venterea says.

The study was funded by the USDA National Institute for Food and Agriculture (NIFA) and the Foundation for Agronomic Research.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/5/1521.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>