Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Get a Feel for Soil-Water Relationships

02.08.2010
A simple and inexpensive demonstration of soil water retention and field capacity

Using little more than PVC rings, a trashcan, and a scale, students can literally get a feel for soil water retention and field capacity, concepts that are important and useful in fields from farming to engineering.

The demonstration, developed by Adam Howard, Drs. Josh Heitman and Dan Bowman of North Carolina State University, was designed to illustrate concepts that can be difficult for students to visualize and understand, and the equipment for making measurements of these variables is expensive. They report their method in the 2010 Journal of Natural Resources and Life Sciences Education, published by the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

The demonstration begins by taping short rings of PVC pipe together into a tall column. That column is then filled with soil and placed in a trashcan, and filling the trashcan with water to saturate the soil column. Saturating the column represents a long, soaking rainfall event.

The column is then removed from the trashcan, and allowed to drain for a day or two. When the excess water in the soil is drained away, the water left is the water contained in the soil at field capacity. Then the rings of the column are separated and the soil in each ring is weighed. As the column is sectioned from the top to the bottom, students are able to feel the differences in the soil water content. The soil is then dried and weighed again to determine the water content in each ring.

The concept of field capacity is one that arises often in soil, crop, and horticultural science disciplines. Field capacity is generally defined as the water content of a soil after free water no longer drains from a thoroughly wetted soil.

Field capacity is generally reported as a single number, which would be the average of the water contents in the rings, but few who use this information know where that number originated. Nor do they realize that this there isn’t one value throughout the depth of the soil, but a continuum of water concentration that increases as you move from the top of the column towards the bottom.

A number of factors influence this soil water content continuum, including the soil texture, or the size of the soil particles, structure, or the way those particles are arranged, and depth to the water table.

The water retention relationship is a valuable tool in many disciplines. This is a relationship that connects the energy status of soil water to the soil water content. The soil water energy status, or potential, is the driver behind water movement in soils. Potential is also what plant roots must overcome to extract water from the soil. Plants wilt at very negative potentials, because they can no longer overcome the tension in very dry soils that limit water movement.

Through this very simple and inexpensive demonstration, students are better able to understand the soil, water, and plant relationships that surround us every day.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/issues/. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>