Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Get a Feel for Soil-Water Relationships

02.08.2010
A simple and inexpensive demonstration of soil water retention and field capacity

Using little more than PVC rings, a trashcan, and a scale, students can literally get a feel for soil water retention and field capacity, concepts that are important and useful in fields from farming to engineering.

The demonstration, developed by Adam Howard, Drs. Josh Heitman and Dan Bowman of North Carolina State University, was designed to illustrate concepts that can be difficult for students to visualize and understand, and the equipment for making measurements of these variables is expensive. They report their method in the 2010 Journal of Natural Resources and Life Sciences Education, published by the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

The demonstration begins by taping short rings of PVC pipe together into a tall column. That column is then filled with soil and placed in a trashcan, and filling the trashcan with water to saturate the soil column. Saturating the column represents a long, soaking rainfall event.

The column is then removed from the trashcan, and allowed to drain for a day or two. When the excess water in the soil is drained away, the water left is the water contained in the soil at field capacity. Then the rings of the column are separated and the soil in each ring is weighed. As the column is sectioned from the top to the bottom, students are able to feel the differences in the soil water content. The soil is then dried and weighed again to determine the water content in each ring.

The concept of field capacity is one that arises often in soil, crop, and horticultural science disciplines. Field capacity is generally defined as the water content of a soil after free water no longer drains from a thoroughly wetted soil.

Field capacity is generally reported as a single number, which would be the average of the water contents in the rings, but few who use this information know where that number originated. Nor do they realize that this there isn’t one value throughout the depth of the soil, but a continuum of water concentration that increases as you move from the top of the column towards the bottom.

A number of factors influence this soil water content continuum, including the soil texture, or the size of the soil particles, structure, or the way those particles are arranged, and depth to the water table.

The water retention relationship is a valuable tool in many disciplines. This is a relationship that connects the energy status of soil water to the soil water content. The soil water energy status, or potential, is the driver behind water movement in soils. Potential is also what plant roots must overcome to extract water from the soil. Plants wilt at very negative potentials, because they can no longer overcome the tension in very dry soils that limit water movement.

Through this very simple and inexpensive demonstration, students are better able to understand the soil, water, and plant relationships that surround us every day.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://www.jnrlse.org/issues/. After 30 days it will be available at the Journal of Natural Resources and Life Sciences Education website, www.jnrlse.org. Go to http://www.jnrlse.org/issues/ (Click on the Year, "View Article List," and scroll down to article abstract).

Today's educators are looking to the Journal of Natural Resources and Life Sciences Education, http://www.jnrlse.org, for the latest teaching techniques in the life sciences, natural resources, and agriculture. The journal is continuously updated online during the year and one hard copy is published in December by the American Society of Agronomy.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>