Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-Driven Project Aims to Help Farmers and Environment

04.06.2013
What if you could save farmers money, protect the quality of the water in a watershed, help keep invasive plants out of waterways, protect biodiversity and prevent potential oxygen-depletion mass fish kills all with one predictive tool?

That’s the goal of a University of Alabama in Huntsville (UAH) student-driven project in the Lake Guntersville, Ala., watershed that’s using NASA geospatial technologies and U.S. Department of Agriculture crop data, along with university aquatic plant growth research.

Senior Earth System Science majors Casey Calamaio and Kel Markert have teamed up with advisors Dr. Rob Griffin of UAH and Dr. Jeff Luvall of NASA’s Global Climatology and Hydrology Center to examine the inherent relationship between aquatic vegetation growth and water drainage near locations of high agricultural activity.

“We’d like for the end result of this to be a type of product that you can use to predict the results of various activities on the watershed,” said Dr. Griffin. The product would use historical data on crop acreage and type, combined with annual agricultural activity data and watershed maps to be predictive of aquatic growth, he said.

As a student-driven effort, Dr. Griffin said Calamaio and Markert presented the project to NASA’s DEVELOP program in a competitive process to get it funded. They work as paid interns for NASA as the research is being done. Markert is currently the Marshall Space Flight Center (MSFC) center lead for DEVELOP.

By combining topographical mapping from NASA satellites and Space Shuttle missions with U.S. Dept. of Agriculture National Agricultural Statistics Service data to show where crops are grown and the types of crops, “you can use the digital satellite information to estimate where the crop was planted over the years and what effects of various crops are on the lake vegetation further downstream,” said Dr. Griffin, an assistant professor in Atmospheric Science.

“NASA is always looking for ways to use its satellite imagery to benefit society,” Dr. Griffin said. “What we used from the Shuttle was elevation data to identify our sub-watersheds, where essentially after a rain event occurs, the water flows to a drainage area.”

Measuring the lake’s annual aquatic plant growth and correlating that to periods of agricultural activity like field preparation, fertilizing, herbicide or pesticide spraying and harvest can illustrate when runoff from these activities is affecting the lake, Calamaio said. Using multispectral satellite imagery in the near-infrared and red wavelengths, the researchers created vegetation indices for observing aquatic vegetation growth in the lake and seasonal variations for Lake Guntersville.

The research could save farmers money by showing them how much of the expensive inputs they apply to crops are not staying in place to do their intended jobs. The researchers are working to make it an accurate prediction tool for the future consequences of various farming practices like no till planting or more precise fertilizer, herbicide and pesticide application using GPS data.

Now that the Tennessee Valley Authority is no longer spraying herbicides to kill aquatic weeds, controlling their growth from the nutrient input side has become more important. Controlling the conditions that lead to algae blooms and aquatic weeds helps support the tourism industry at Lake Guntersville by keeping weeds from choking landings and harbors while preventing fish from eventually falling prey to possible mass deaths from oxygen depletion caused by the decay of plant matter in the water column.

That process is known as eutrophication, Calamaio said, where over-enriched waters allow native vegetation to be replaced with different species and biodiversity declines.

“Hopefully with this tool,” he said, “we will be able to create prevention measures to help better keep farm nutrients and chemicals with the crops.”

Jim Steele | Newswise
Further information:
http://www.uah.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>