Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stronger corn? Take it off steroids, make it all female

A Purdue University researcher has taken corn off steroids and found that the results might lead to improvements in that and other crops.

Burkhard Schulz, an assistant professor of horticulture and landscape architecture, wanted to understand the relationship between natural brassinosteroids - a natural plant steroid hormone - and plant architecture, specifically plant height. Schulz said corn could benefit by becoming shorter and sturdier, but the mechanisms that control those traits are not completely understood.

"It is essential to change the architecture of plants to minimize how much land we need to produce food and fuels," said Schulz, whose findings are published in the early online version of the Proceedings of the National Academy of Sciences. "If you can find a natural mutation or mechanism that gives you what you need, you are much better off than using transgenic techniques that could be difficult to get approval for."

Schulz found that when maize loses the ability to produce brassinosteroids, it becomes a dwarf, as he suspected. But another feature caught him off guard: The plants without the naturally occurring steroids could not make male organs - they had kernels where the tassels should be.

That could be a cost-saving discovery for the seed industry. Hybrid seed producers must painstakingly remove the male pollen-producing tassels from each plant so that they do not pollinate themselves. Schulz said maize plants that produce only female organs would eliminate the detasseling step.

"This would be the perfect mutation for hybrid seed production," Schulz said. "There is no way these plants could produce pollen because they do not have male flowers."

Schulz used a multistep process to determine brassinosteroids' role in height and, later, sex determination. He wanted to ensure that light and the addition of gibberelic acid, a hormone that promotes cell growth and elongation, would not eliminate the dwarfism.

Schulz gathered known mutants of maize with short mesocotyls, the first node on a corn stalk. He suspected that even dwarf plants that produced brassinosteroids would have elongated mesocotyls if grown in the dark as they stretched for light, a trait typical of all brassinosteroid mutants. He also added gibberellic acid to the plants to ensure that a deficiency of that hormone was not causing the dwarfism.

The dwarf plants that did not grow in the dark or with the addition of the gibberellic acid were compared to regular maize plants that had been dwarfed by subjecting them to a chemical that disrupts the creation of brassinosteroids. Both exhibited short stalks with twisted leaves and showed the feminization of the male tassel flower.

Schulz then used information that was already known from the research plant Arabidopsis about genes that control brassinosteroid production. He found the same genes in the maize genome.

In the dwarf maize plants, those genes were mutated, disrupting the biosynthesis of the steroids. A chemical analysis showed that the compounds produced along the pathway of gene to steroid were greatly diminished in the maize dwarfs. Cloning of the gene revealed that an enzyme of the brassinosteroid pathway was defective in the mutant plants. A related enzyme in humans has been reported as essential for the production of the sex steroid hormone testosterone. Mutations in this enzyme in humans also resulted in feminization.

While Schulz expected brassinosteroids to affect plant height, he said he did not expect those steroids to affect sex determination.

"We don't know if this is a special case for corn or if this is generally the same in other plants," he said. "If it is the same in other plants, it should be useful for creating plants or trees in which you want only males or females."

Gurmukh Johal, a professor of botany and plant pathology and collaborator on the research, identified the mutant used in the research, nana plant1, years ago. He said better understanding the steroid-production pathways could be important to strengthening maize plants and increasing yields.

"Maize produces too much pollen and it actually wastes a lot of energy on that," Johal said. "This implies that by using this gene or the pathway it controls, we could manipulate the plants to improve their quality."

Schulz said he would look at other plants, such as sorghum, to determine if the same genes and pathways control sex determination and height.

The project was an international collaboration with George Chuck from the Plant Gene Expression Center at the University of California Berkeley, Shozo Fujioka of RIKEN Advanced Science Institute in Japan, Sunghwa Choe of Seoul National University in South Korea, and Devi Prasad Potluri of Chicago State University.

The National Science Foundation and the U.S. Department of Agriculture funded the research.

Writer: Brian Wallheimer, 765-496-2050,

Sources: Burkhard Schulz, 765-496-3635,
Gurmukh Johal, 765-494-4448,

Brian Wallheimer | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>