Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

String blossom thinner proves effective across stages of bloom development

04.03.2011
Research provides good news for stone fruit growers

Blossom or fruitlet thinning is a labor-intensive part of commercial peach and nectarine production. The use of mechanical string blossom thinners has been shown to reduce labor requirements and improve fruit size in peach crops, but stone fruit producers have needed more information about the range of thinning times.

New research from Tara Auxt Baugher and colleagues from The Pennsylvania State University and Penn State Cooperative Extension gives producers sought-after data about optimum thinning times.

Baugher said that, prior to this study on bloom stage, peach producers interested in the cost-effectiveness of string blossom thinning had unanswered questions about the range of thinning timings. "Some were concerned about spring freezes and wanted to thin as late as possible, and some wanted to obtain as many hours of use from the mechanical thinner as possible. Based on this study, we have determined that the thinning timeframe is from pink to petal fall, which is good news for both commercial situations."

The research, conducted over 2 years on 'Sugar Giant' peach and 'Arctic Sweet' nectarine, was designed to assess the effects of mechanical thinning at various bloom stages compared with conventional green fruit hand-thinning on blossom removal and follow-up hand-thinning requirement, and on crop load, fruit size, and net economic impact. Results showed that blossom removal with the string thinner was significant across years, cultivars, and canopy regions for bloom stages in which there were open flowers.

The best treatments reduced follow-up hand-thinning time compared with green fruit hand-thinning alone by 51% and 41% for 'Sugar Giant' and by 42% and 22% for 'Arctic Sweet' in years one and two, respectively. The savings in hand-thinning time and increases in fruit size associated with the bloom stage treatments increased the value of the peach and nectarine crops, resulting in a net positive impact of $123/ha to 1368/ha compared with hand-thinning alone.

"This study demonstrated that it is more difficult to remove blossoms at pink compared with other bloom stages, which indicates that producers will need to thin more aggressively at earlier bloom stages; e.g., by increasing spindle rpm.", Baugher said. "A benefit of using the string thinner at earlier stages of bloom development is that there can be an increased effect on fruit size and market value."

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/9/1327

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>