Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Strategy Aims to Reduce Agricultural Ammonia Emissions

13.05.2011
As concerns about air pollution from large dairies and other concentrated animal feeding operations (CAFOs) continue to mount, scientists are reporting a practice that could cut emissions of an exceptionally abundant agricultural gas—ammonia—by up to 30%.

In the May-June 2011 issue of the Journal of Environmental Quality, a team led by Mark Powell, a soil scientist with the USDA Agricultural Research Service’s U.S. Dairy Forage Research Center in Madison, WI, describes how natural plant compounds known as tannins can reduce both the amount of nitrogen cows excrete in urine, and the action of a microbial enzyme in manure that converts the nitrogen into ammonia on the barn floor.

The U.S. EPA already monitors ammonia emissions from large animal operations under the “Superfund” act, and in April a coalition of citizen groups petitioned the agency to begin regulating ammonia under the Clean Air Act, as well. Besides its pungent smell, ammonia that volatilizes from cattle manure is highly reactive in the atmosphere, forming particulates that travel long distances and contribute to environmental problems such as acid rain, nutrient pollution, and smog.

Feeding tannins to cattle could not only help dairy farmers reduce these impacts and meet regulatory standards, Powell says, but tannins could also boost nitrogen use efficiency in cows, thereby decreasing the need for expensive protein supplements. Only 20 to 35% of feed nitrogen ends up in milk on commercial dairy farms, with the remainder excreted about equally in manure and urine as the compound, urea.

Urea is produced when nitrogen-rich proteins break down mainly in the cow rumen, forming ammonia gas that’s eventually converted to urea before being excreted. Tannins are thought to cut urea production by somehow allowing more protein to escape digestion in the rumen and enter the cow intestine, where it’s used more efficiently to produce milk protein.

Tannins are perhaps best known for their role in leather tanning, but Powell began investigating them in ruminant feed more than two decades ago in West Africa. In the communities where he worked, tannin-rich shrubs were grown as windbreaks, and to amend the soil and feed livestock. Tannins in the diets of cattle, sheep and goats are in fact well-studied in the tropics, where the vegetation tends to be naturally higher in the astringent plant chemicals, Powell explains. “But tannin research, in terms of ruminant nutrition, is relatively new in temperate environments.”

In the new study, Powell and dairy scientists from the University of Wisconsin-Madison fed tannin extracts from red quebracho and chestnut trees to dairy cows that also received two concentrations of crude protein: a low level of 15.5% protein, and a higher one of 16.8%. What they found is that dietary tannin cut ammonia emissions from the cows’ manure by an average of 30% at the low protein level, 16% at the high level, or 23% overall. In other words, cows that consumed tannin expelled significantly less urea, thus making less available for conversion to ammonia.

But a drop in urea production wasn’t the only effect. To his surprise, Powell discovered that tannins also appear to inhibit urease, the enzyme that converts urea to ammonia. Urease activity in the feces of tannin-fed cows was significantly lower than in the feces of control animals, resulting in an 11% drop in emitted ammonia—or one-third of tannin’s total impact on emissions at the high protein level. And when the researchers applied tannin directly to manure on the barn floor (rather than feeding it to cows), the effect was even greater: Ammonia emissions declined by nearly 20%.

The tannin sources investigated in the study are already approved for animal feed, and “the levels we used amount to pennies per cow per day,” Powell says, suggesting they could offer a cost-effective means to cut ammonia losses from the barn floor, as well as from manure that’s applied to farm fields as fertilizer. Powell is now working with chemists to determine exactly which compounds in the tannin mixtures produce the effect, with an eye toward manufacturing a synthetic substitute later on.

In the meantime, he has set his sights on another important air pollutant that is prodigiously produced by cows. “We have another experiment looking at higher doses of tannin in dairy cattle,” he says. “We want to see if it can reduce methane emissions.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/3/907.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>