Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Strategy Aims to Reduce Agricultural Ammonia Emissions

13.05.2011
As concerns about air pollution from large dairies and other concentrated animal feeding operations (CAFOs) continue to mount, scientists are reporting a practice that could cut emissions of an exceptionally abundant agricultural gas—ammonia—by up to 30%.

In the May-June 2011 issue of the Journal of Environmental Quality, a team led by Mark Powell, a soil scientist with the USDA Agricultural Research Service’s U.S. Dairy Forage Research Center in Madison, WI, describes how natural plant compounds known as tannins can reduce both the amount of nitrogen cows excrete in urine, and the action of a microbial enzyme in manure that converts the nitrogen into ammonia on the barn floor.

The U.S. EPA already monitors ammonia emissions from large animal operations under the “Superfund” act, and in April a coalition of citizen groups petitioned the agency to begin regulating ammonia under the Clean Air Act, as well. Besides its pungent smell, ammonia that volatilizes from cattle manure is highly reactive in the atmosphere, forming particulates that travel long distances and contribute to environmental problems such as acid rain, nutrient pollution, and smog.

Feeding tannins to cattle could not only help dairy farmers reduce these impacts and meet regulatory standards, Powell says, but tannins could also boost nitrogen use efficiency in cows, thereby decreasing the need for expensive protein supplements. Only 20 to 35% of feed nitrogen ends up in milk on commercial dairy farms, with the remainder excreted about equally in manure and urine as the compound, urea.

Urea is produced when nitrogen-rich proteins break down mainly in the cow rumen, forming ammonia gas that’s eventually converted to urea before being excreted. Tannins are thought to cut urea production by somehow allowing more protein to escape digestion in the rumen and enter the cow intestine, where it’s used more efficiently to produce milk protein.

Tannins are perhaps best known for their role in leather tanning, but Powell began investigating them in ruminant feed more than two decades ago in West Africa. In the communities where he worked, tannin-rich shrubs were grown as windbreaks, and to amend the soil and feed livestock. Tannins in the diets of cattle, sheep and goats are in fact well-studied in the tropics, where the vegetation tends to be naturally higher in the astringent plant chemicals, Powell explains. “But tannin research, in terms of ruminant nutrition, is relatively new in temperate environments.”

In the new study, Powell and dairy scientists from the University of Wisconsin-Madison fed tannin extracts from red quebracho and chestnut trees to dairy cows that also received two concentrations of crude protein: a low level of 15.5% protein, and a higher one of 16.8%. What they found is that dietary tannin cut ammonia emissions from the cows’ manure by an average of 30% at the low protein level, 16% at the high level, or 23% overall. In other words, cows that consumed tannin expelled significantly less urea, thus making less available for conversion to ammonia.

But a drop in urea production wasn’t the only effect. To his surprise, Powell discovered that tannins also appear to inhibit urease, the enzyme that converts urea to ammonia. Urease activity in the feces of tannin-fed cows was significantly lower than in the feces of control animals, resulting in an 11% drop in emitted ammonia—or one-third of tannin’s total impact on emissions at the high protein level. And when the researchers applied tannin directly to manure on the barn floor (rather than feeding it to cows), the effect was even greater: Ammonia emissions declined by nearly 20%.

The tannin sources investigated in the study are already approved for animal feed, and “the levels we used amount to pennies per cow per day,” Powell says, suggesting they could offer a cost-effective means to cut ammonia losses from the barn floor, as well as from manure that’s applied to farm fields as fertilizer. Powell is now working with chemists to determine exactly which compounds in the tannin mixtures produce the effect, with an eye toward manufacturing a synthetic substitute later on.

In the meantime, he has set his sights on another important air pollutant that is prodigiously produced by cows. “We have another experiment looking at higher doses of tannin in dairy cattle,” he says. “We want to see if it can reduce methane emissions.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/40/3/907.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>