Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statistical model predicts performance of hybrid rice

14.08.2014

UC Riverside-led research could revolutionize hybrid breeding in agriculture

Genomic prediction, a new field of quantitative genetics, is a statistical approach to predicting the value of an economically important trait in a plant, such as yield or disease resistance. The method works if the trait is heritable, as many traits tend to be, and can be performed early in the life cycle of the plant, helping reduce costs.


Shizhong Xu is a professor of genetics at UC Riverside.

Credit: Xu Lab, UC Riverside

Now a research team led by plant geneticists at the University of California, Riverside and Huazhong Agricultural University, China, has used the method to predict the performance of hybrid rice (for example, the yield, growth-rate and disease resistance). The new technology could potentially revolutionize hybrid breeding in agriculture.

The study, published online this week in the Proceedings of the National Academy of Sciences, is a pilot research project on rice. The technology can be easily extended, however, to other crops such as maize.

... more about:
»DNA »crops »effects »genes »genomic »grow »markers

"Rice and maize are two main crops that depend on hybrid breeding," said Shizhong Xu, a professor of genetics in the UC Riverside Department of Botany and Plant Sciences, who co-led the research project. "If we can identify many high-performance hybrids in these crops and use these hybrids, we can substantially increase grain production to achieve global food security."

Genomic prediction uses genome-wide markers to predict future individuals or species. These markers are genes or DNA sequences with known locations on a chromosome. Genomic prediction differs from traditional predictions in that it skips the marker-detection step. The method simply uses all markers of the entire genome to predict a trait.

"Classical marker-assisted selection only uses markers that have large effects on the trait," Xu explained. "It ignores all markers with small effects. But many economically important traits are controlled by a large number of genes with small effects. Because the genomic prediction model captures all these small-effect genes, predictability is vastly improved."

Without genomic prediction, breeders must grow all possible crosses in the field to select the best cross (hybrid). For example, for 1000 inbred parents, the total number of crosses would be 499500.

"It is impossible to grow these many crosses in the field," Xu said. "However, with the genomic prediction technology, we can grow only, say, 500 crosses, then predict all the 499500 potential crosses, and select the best crosses based on the predicted values of these hybrids."

Xu noted that genomic prediction is particularly useful for predicting hybrids because hybrid DNA sequences are determined by their inbred parents.

"More cost-saving can be achieved because we do not need to measure the DNA sequences of the hybrids," he said. "Knowing the genotypes of the parents makes it possible to immediately know the genotype of the hybrid. Indeed, there is no need to measure the genotype of the hybrid. It is fully predicted by the model."

When the researchers incorporated "dominance" and "epistasis" into their prediction model, they found that predictability was improved. In genetics, dominance describes the joint action of two different alleles (copies) of a gene. For example, if one copy of a gene has a value of 1 and the other copy has a value of 2, the joint effect of the two alleles may be 4, indicating that the two alleles are not additive. In this case, dominance has occurred. Epistasis refers to any type of gene-gene interaction.

"By incorporating dominance and epistasis, we took into account all available information for prediction," Xu said. "It led to a more accurate prediction of a trait value."

Genomic prediction can be used to predict heritable human diseases. For example, many cancers are heritable and genome prediction can be performed to predict disease risk for a person.

Xu was joined in the research by Qifa Zhang and his student Dan Zhu at Huazhong Agricultural University, China.

Next the research team, led by Xu and Zhang, will design a field experiment to perform hybrid prediction in rice.

###

The research was funded by a grant to Xu from the National Institute of Food and Agriculture of the U.S. Department of Agriculture and a grant to Zhang from the National Natural Science Foundation of China.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: DNA crops effects genes genomic grow markers

More articles from Agricultural and Forestry Science:

nachricht How much soil goes down the drain -- New data on soil lost due to water
18.12.2017 | European Commission Joint Research Centre

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>