Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Statistical model predicts performance of hybrid rice

14.08.2014

UC Riverside-led research could revolutionize hybrid breeding in agriculture

Genomic prediction, a new field of quantitative genetics, is a statistical approach to predicting the value of an economically important trait in a plant, such as yield or disease resistance. The method works if the trait is heritable, as many traits tend to be, and can be performed early in the life cycle of the plant, helping reduce costs.


Shizhong Xu is a professor of genetics at UC Riverside.

Credit: Xu Lab, UC Riverside

Now a research team led by plant geneticists at the University of California, Riverside and Huazhong Agricultural University, China, has used the method to predict the performance of hybrid rice (for example, the yield, growth-rate and disease resistance). The new technology could potentially revolutionize hybrid breeding in agriculture.

The study, published online this week in the Proceedings of the National Academy of Sciences, is a pilot research project on rice. The technology can be easily extended, however, to other crops such as maize.

... more about:
»DNA »crops »effects »genes »genomic »grow »markers

"Rice and maize are two main crops that depend on hybrid breeding," said Shizhong Xu, a professor of genetics in the UC Riverside Department of Botany and Plant Sciences, who co-led the research project. "If we can identify many high-performance hybrids in these crops and use these hybrids, we can substantially increase grain production to achieve global food security."

Genomic prediction uses genome-wide markers to predict future individuals or species. These markers are genes or DNA sequences with known locations on a chromosome. Genomic prediction differs from traditional predictions in that it skips the marker-detection step. The method simply uses all markers of the entire genome to predict a trait.

"Classical marker-assisted selection only uses markers that have large effects on the trait," Xu explained. "It ignores all markers with small effects. But many economically important traits are controlled by a large number of genes with small effects. Because the genomic prediction model captures all these small-effect genes, predictability is vastly improved."

Without genomic prediction, breeders must grow all possible crosses in the field to select the best cross (hybrid). For example, for 1000 inbred parents, the total number of crosses would be 499500.

"It is impossible to grow these many crosses in the field," Xu said. "However, with the genomic prediction technology, we can grow only, say, 500 crosses, then predict all the 499500 potential crosses, and select the best crosses based on the predicted values of these hybrids."

Xu noted that genomic prediction is particularly useful for predicting hybrids because hybrid DNA sequences are determined by their inbred parents.

"More cost-saving can be achieved because we do not need to measure the DNA sequences of the hybrids," he said. "Knowing the genotypes of the parents makes it possible to immediately know the genotype of the hybrid. Indeed, there is no need to measure the genotype of the hybrid. It is fully predicted by the model."

When the researchers incorporated "dominance" and "epistasis" into their prediction model, they found that predictability was improved. In genetics, dominance describes the joint action of two different alleles (copies) of a gene. For example, if one copy of a gene has a value of 1 and the other copy has a value of 2, the joint effect of the two alleles may be 4, indicating that the two alleles are not additive. In this case, dominance has occurred. Epistasis refers to any type of gene-gene interaction.

"By incorporating dominance and epistasis, we took into account all available information for prediction," Xu said. "It led to a more accurate prediction of a trait value."

Genomic prediction can be used to predict heritable human diseases. For example, many cancers are heritable and genome prediction can be performed to predict disease risk for a person.

Xu was joined in the research by Qifa Zhang and his student Dan Zhu at Huazhong Agricultural University, China.

Next the research team, led by Xu and Zhang, will design a field experiment to perform hybrid prediction in rice.

###

The research was funded by a grant to Xu from the National Institute of Food and Agriculture of the U.S. Department of Agriculture and a grant to Zhang from the National Natural Science Foundation of China.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: DNA crops effects genes genomic grow markers

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>