Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spray application rate, equipment affect pest management in greenhouse ivy plants

01.04.2010
Efficacy of spray boom systems tested in Belgian greenhouses

In Belgium, ornamental plants account for almost 0.46 billion euro in sales, or about 34% of total horticultural production output. For growers, finding ways to control pests in production facilities is more difficult as the availability of authorized plant protection products becomes more regulated. Ninety percent of Belgian growers still use high-pressure spray equipment to apply plant protection products, but a recent survey of ornamental plant growers showed that present-day spray application techniques are unsatisfactory. As more growers implement automated spray boom systems, many questions remain concerning the optimal settings for the equipment. New research now offers some clear recommendations for production greenhouse operators.

Besides the traditional fixed or rolling benches on the floor, Belgian potted plant growers frequently use hanging shelves positioned 2 to 4 meters high in the greenhouse arches. This technique allows growers to make the most of limited greenhouse space. Because these shelves are located above the traditional benches and close to the greenhouse roof, the only currently available and useful equipment for applying plant protection products are spray guns. In most cases, the spray gun is operated from the ground floor and the spray "cloud" has to be targeted from a distance and sprayed from below to the canopy. When spray guns, or "lances", are use to apply pesticides to potted plants grown on hanging shelves, much of the pesticide ends up on the ground; the amount of pesticide retained on the crop depends on the formulation of the pesticide, the volume of spray applied, the type of spray equipment, weather, and other factors.

David Nuyttens of the Institute for Agricultural and Fisheries Research (ILVO) and a team of research scientists investigated the effect of spray application technique on the spray deposition in ivy pot plants grown on hanging shelves in greenhouses. The experiment was conducted in a commercial greenhouse during January and February 2008 using the ivy cultivar Hedera algeriensis cv. Montgomery (Hibb.). Two different spray application systems were tested: a spray gun equipped with a disc-core nozzle, and vertical spray booms mounted on a trolley. The effect of application rate, nozzle type, size and spray pressure, and the difference between the traditional spray gun and a vertical spray boom system were recorded. The full study was published in HortScience.

The scientists found that the spray system and application rate clearly influenced the system's effectiveness. "Evaluating the deposition results for the two crop zones reveals that the spray gun performed quite well on the runners", Nuyttens explained. "With this technique, the spray liquid was targeted from below to the easily accessible runners, which might explain the higher spray deposition on this part of the crop." For the sprays performed with the spray boom system, a significant difference was found between the lower and higher application rate. Because the concentration of tracer was the same for both application rates, doubling the application rate justifies the increase in spray depositions.

On the main crop canopy, the spray gun performed a lot worse", Nuyttens added. "Although the spray gun operated from the ground floor still performed best on the easily accessible crop zone with the runners, its performance in the more dense main crop canopy zone was inferior."

Summarizing the significance of the research, the researchers said that the experiment underlines that, besides the application rate, the spray application equipment is an important factor defining the spray deposition achieved when spraying ivy pot plants stored on hanging shelves in greenhouses.

###
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/7/1921

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>