Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Spout Nearly Doubles Maple Production, Has 1 Million Advance Orders

20.08.2009
An innovative new maple spout developed by the University of Vermont’s Proctor Maple Research Center with funding from the U.S. Department of Agriculture secured by Senator Patrick J. Leahy, will have a dramatic impact on maple syrup production and will boost job creation and economic development.

The new spout will increase sap yields by 50 to 90 percent per tree.

The announcement was made at Progressive Plastics in Williamstown, Vt., which began commercial production of the device, called a check valve spout, on August 17. Progressive Plastics is manufacturing the spout for Leader Evaporating Company of Swanton, Vt., which licensed the technology from UVM and will market and sell it.

Blocking backflow

The check valve technology was invented by Timothy Perkins, director of the Proctor Maple Research Center. It employs a valve -- a small ball that rolls back and forth in a chamber within the spout -- to block the flow back into the tree of sap containing bacteria.

All tapped maple trees pull sap back into their tap holes, as they try to balance the negative pressure established both by natural process and by vacuum tubing systems, which are pervasive in the industry. Bacterial backflow in turn causes the tree’s natural defense system to wall off the contaminated area of the tap hole, essentially plugging it and ending a sugarmaker’s season. Such walling off typically occurs late in the season.

By allowing the tree’s sap to continue to flow, the new spout will extend the sugarmaking season by one-and-a-half to two-and-a-half weeks, according to testing conducted by the Proctor and confirmed by Leader’s field testing. The sugaring season is typically four weeks long.

The tap could also mitigate the effect of global warming on the Vermont maple industry. Warming has shortened the Vermont maple season by 10% over the last 40 years, according to research conducted by Perkins.

1 million advance orders

Although Leader has not yet listed the spout in its catalog or on its web site, the company has already received 1 million advance orders. Leader is projecting sales of three million units this maple season, making the spout its number one selling product. In the future, sales could be significantly higher.

According to Gary Gaudette, president of Leader Evaporator, the check valve spout could have a revolutionary impact on the maple industry.

“It’s going to add as much to syrup and sap production as vacuum tubing did.

I’m confident that this is going to be the thing to use in the future.” There are between 50 and 55 million taps in use in North America, Gaudette said.

Both Leader and Progressive Plastics are in hiring mode despite the recession, leadership at both companies said, and both anticipate the new spout will add further to their need to bring on new staff.

Jeff Wakefield | Newswise Science News
Further information:
http://www.uvm.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>