Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-Spotted Spider Mite Genome May Yield Better Pesticides

28.11.2011
A University of Utah biologist and an international research team decoded the genetic blueprint of the two-spotted spider mite, raising hope for new ways to attack the major pest, which resists pesticides and destroys crops and ornamental plants worldwide.

The voracious mites, which technically are not insects, can eat more than 1,100 plant species – a rare trait. The mites’ newly revealed and sequenced genome contains a variety of genes capable of detoxifying pesticides as well as toxins plants use to defend themselves, the scientists report in the Thursday, Nov. 24 issue of the journal Nature.

“One key thing that makes spider mites unique is they can eat many, many different plant species,” says Richard M. Clark, one of five main authors of the study and an assistant professor of biology at the University of Utah. “These mites are often house plant pests – a major cause of people’s house plants turning yellow and getting sick. They also are a major problem for agricultural nurseries and greenhouses, and for field crops.”

Primary targets are tomatoes, peppers, cucumbers, strawberries, corn, soybeans, apples, grapes and citrus.

Clark says the new study’s “importance is largely in understanding how animals eat plants, with the long-term goal of developing effective ways to prevent crop damage from mites and insects. If we can identify the biological pathways mites use to feed on plants, we can potentially identify chemical and biological methods to disrupt those pathways and stop the mites from feeding.”

The two-spotted spider mite, which is no more than 1 millimeter long, “is a major global pest, and is predicted to be a growing concern in a warming climate because they multiply extremely fast at high temperatures – 90 degrees Fahrenheit or more,” he adds. “They do really well in hot and dry climates like Utah.”

Yet, the two-spotted spider mite “has been found to rapidly develop resistance to multiple types of pesticides, often within a couple of years after a pesticide is introduced,” says Clark. “It is resistant to many common pesticides used against insects.”

The Nature study deciphering the genome of Tetranychus urticae, the two-spotted spider mite (which has two red spots), was conducted by an international research team of 55 scientists from North America, Europe and South America.

Besides Clark, the other primary authors are biologists Yves Van de Peer of Ghent University and the Flanders Institute for Biotechnology in Belgium; Miodrag Grbic of the University of Western Ontario, Canada; Thomas Van Leeuwen of Ghent University; and Rene Feyereisen of the University of Nice Sophia Antipolis in France.

Genetic Blueprint of the Two-Spotted Spider Mite

Decoding the spider mite’s genome required dozens of scientists with expertise in various gene families. Clark mainly studied which genes are “expressed” or activated and thus make messenger RNA, or mRNA, which in turn is used to make proteins.

The study found that the two-spotted spider mite has 18,414 genes. Clark and University of Utah graduate student Edward J. Osborne found that 15,397 genes are “expressed” or activated to make proteins.

The spider mite genome contains about 90 megabases – that’s 90 million “base pairs” of DNA letters (A,C, G and T) – which is the smallest genome yet sequenced for any arthropod, which are invertebrate or spineless animals with external skeletons or exoskeletons, segmented bodies, and appendages with joints.

“Many of the other genomes are enormous,” some close to 3 billion bases, or about the size of the human genome, and some up to 7.1 billion bases, Clark says.

Arthropods include hexapods (insects and insect-like animals), crustaceans (lobsters, crabs, shrimp, barnacles), myriapods (millipedes, centipedes) and chelicerates (spiders, scorpions, mites and ticks). Chelicerates are the largest group of animals after insects. The two-spotted spider mite is the first chelicerate to have its genome fully sequenced.

While there are other species of plant-feeding mites, the researchers chose to sequence the genome of the two-spotted spider mite “because of all the spider mites, this is the most widespread because it feeds on so many different plant species,” Clark says.

The study’s findings shed light on how the spider mites evolved differently than other arthropods. Compared with other arthropods, the two-spotted spider mite:

-- Uses a different molting hormone to shed its exoskeleton during growth.

-- Has only eight Hox genes to orchestrate body-plan development, compared with 10 in most other arthropods, and thus has only two main body segments instead of three. There are other cases in which Hox genes were activated differently in different arthropods, “but this is an extreme case,” Clark says. “The genes are both gone.”

-- Makes silk that is strong like spider silk but 185 to 435 times thinner. “Spiders spin silk from their abdomens, spider mites from the head region,” Clark says. Spider mites use silk to hide from predators, keep themselves warm, and suspend eggs out of predators’ reach. Silk from the mites may prove useful as biodegradable surgical sutures and bandages. It “is very thin and very easy to get because you can grow lots of mites on plants,” Clark says.

A Genetic Arsenal to Attack Plant Toxins and Pesticides

The spider mite genome also revealed the presence of “families of genes involved in breaking down toxic compounds, either in plants poisonous to the spider mites or in pesticides,” says Clark. “You would imagine that if these mites feed on such a broad number of plant hosts, they would have many genes known to be involved in breaking down toxic compounds. And we found that they did.”

In some specific families of detoxification genes in the spider mites, “the number of genes was about three times that seen in other arthropods,” he adds.

As part of the study, the scientists took a specific strain of spider mites that normally eat kidney beans and transferred them to tomato and thale cress (Arabidopsis) plants. On these new plants, the mites “expressed” or activated different genes and thus made different detoxification compounds so they could eat the new plant species. Some of those detox genes were previously unknown and thus provide new insight into how mites counteract plant defenses.

For example, half of the cytochrome P450 family of detoxification genes changed expression – turned either on or off – when the mites were switched to the new plants. That is a bigger change than seen before in any group of animals, Clark says.

“This suggests that these genes are critical for the ability of mites to be pests on many different plants.”

Clark says the spider mite has 39 genes from one drug-resistance gene family (and the proteins they encode), compared with only nine to 14 in insects and vertebrate animals. That shows how an expanded set of genes evolved to help the pests feed on numerous plant species.

In a yet-unexplained mystery, the two-spotted spider mite has some genes similar to those in bacteria and fungi. “They somehow captured them from other organisms in the environment and now are using them for their own growth and persistence,” says Clark. “They are mostly enzymes involved in changing other small molecules. The hypothesis is these genes may be involved in modifying [detoxifying] toxic compounds found in plants.”

Clark’s part of the study was funded by the University of Utah and the National Science Foundation. The study’s key funding sources included the U.S. Department of Energy, Genome Canada and Belgium’s Fund for Scientific Research Flanders.

Contacts:
-- Richard M. Clark, assistant professor of biology – (801) 585-9722, cellular (801) 599-6438, clark@biology.utah.edu (Clark will be traveling and difficult to reach on Nov. 23.)

-- Lee Siegel, science news specialist, University of Utah Public Relations – office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

University of Utah Public Relations
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | Newswise Science News
Further information:
http://www.unews.utah.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>