Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spider mite's secrets revealed

24.11.2011
Tiny pest's genome opens door to novel approaches to crop protection and silk production

The tiny two-spotted spider mite (Tetranychus urticae) causes much anxiety for farmers, and has been, to date, a scientific mystery. It feeds on over 1,100 species of plants, including 150 greenhouse plants and crops, such as maize, soy, tomatoes and citrus.

The cost of chemically controlling damage caused by the spider mite exceeds USD 1 billion per year. In the latest issue of the journal Nature, a multinational consortium of scientists publish the sequenced genome of the spider mite, revealing how it is capable of such feeding frenzy, as well as other secrets of this tiny pest. These findings open the door to new approaches in pest control and crop protection, by allowing greater insight into the biological interactions between plants and herbivores that feed on them.

Élio Sucena and Sara Magalhães, group leaders at the Instituto Gulbenkian de Ciência (IGC) and the Centre for Environmental Biology, University of Lisbon (Portugal), respectively, are part of the 55-strong team of researchers from 10 countries that were involved in this project. Led by Miodrag Grbic (University of Western Ontario, Canada), this team analysed the genome of the spider mite, sequenced with funds from the US Department of Energy (DOE) Joint Genome Institute (JGI) programme, Genome Canada and the European Union.

The spider mite feeds on an astonishingly large number of plants because it withstands the toxins that plants produce. This in itself is an amazing feat. However, among arthropods (animals with exoskeletons, such as spiders, ticks, crustaceans and insects), the spider mite holds first place in the number of pesticides it is resistant to. Mites become resistant to new pesticides within two to four years, meaning that control of multi-resistant spider mites has become increasingly difficult.

Having the sequence of the spider mite genome has shown light on the genetic basis for its feeding flexibility and pesticide resistance. The secret lies in having, on the one hand, more copies of the genes involved in digesting and degrading plant toxins when compared to insects. On the other, the tiny pest seems to have incorporated genes from bacteria and fungi that are involved in digestion and detoxification.

Indeed, the researchers identified two groups of bacterial and fungi genes that are unique to the spider mite, suggesting that the tiny arthropod is adept at making the most of the innovation of transfer of genes between distant species (called lateral gene transfer - a rare occurrence in nature).

Other groups of genes are shared, with aphids, for example (aphids are insects that also feed on crops). By comparing the aphid genome with that of the spider mite, it seems that the bacterial genes moved first into the insects and from these were taken up by the spider mite.

The name gives it away: spider mites make webs, for protection against predators and as a barrier against bad weather. However, their webs are different to those made by spiders: the genome sequence has revealed 17 genes involved in making web proteins. These proteins make thinner fibres, but seem to be slightly more resistant to mechanical forces than other natural materials.

All these secrets came out of a very small genome - only 90 megabases (the fruit fly genome has 180 megabases; the human genome has 3,000 megabases). It is, indeed, the smallest arthropod genome sequenced so far, and reveals a remarkable evolutionary history: the spider mite has lost many genes that are shared amongst arthropods, but has accumulated species-specific genes, such as those that give it the ability to withstand toxins and pesticides.

The Portuguese scientists were involved in analysing immunity-related genes found in the spider mite genome. The spider mite belongs to the Chelicerata family, the second largest group of terrestrial animals. Chelicerates include spiders, scorpions and ticks. Chelicerates and insects make up the Arthropods. The spider mite is the first chelicerate to have its entire genome sequenced and analysed.

Ana Godinho | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

24.04.2017 | Life Sciences

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>