Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spider mite's secrets revealed

24.11.2011
Tiny pest's genome opens door to novel approaches to crop protection and silk production

The tiny two-spotted spider mite (Tetranychus urticae) causes much anxiety for farmers, and has been, to date, a scientific mystery. It feeds on over 1,100 species of plants, including 150 greenhouse plants and crops, such as maize, soy, tomatoes and citrus.

The cost of chemically controlling damage caused by the spider mite exceeds USD 1 billion per year. In the latest issue of the journal Nature, a multinational consortium of scientists publish the sequenced genome of the spider mite, revealing how it is capable of such feeding frenzy, as well as other secrets of this tiny pest. These findings open the door to new approaches in pest control and crop protection, by allowing greater insight into the biological interactions between plants and herbivores that feed on them.

Élio Sucena and Sara Magalhães, group leaders at the Instituto Gulbenkian de Ciência (IGC) and the Centre for Environmental Biology, University of Lisbon (Portugal), respectively, are part of the 55-strong team of researchers from 10 countries that were involved in this project. Led by Miodrag Grbic (University of Western Ontario, Canada), this team analysed the genome of the spider mite, sequenced with funds from the US Department of Energy (DOE) Joint Genome Institute (JGI) programme, Genome Canada and the European Union.

The spider mite feeds on an astonishingly large number of plants because it withstands the toxins that plants produce. This in itself is an amazing feat. However, among arthropods (animals with exoskeletons, such as spiders, ticks, crustaceans and insects), the spider mite holds first place in the number of pesticides it is resistant to. Mites become resistant to new pesticides within two to four years, meaning that control of multi-resistant spider mites has become increasingly difficult.

Having the sequence of the spider mite genome has shown light on the genetic basis for its feeding flexibility and pesticide resistance. The secret lies in having, on the one hand, more copies of the genes involved in digesting and degrading plant toxins when compared to insects. On the other, the tiny pest seems to have incorporated genes from bacteria and fungi that are involved in digestion and detoxification.

Indeed, the researchers identified two groups of bacterial and fungi genes that are unique to the spider mite, suggesting that the tiny arthropod is adept at making the most of the innovation of transfer of genes between distant species (called lateral gene transfer - a rare occurrence in nature).

Other groups of genes are shared, with aphids, for example (aphids are insects that also feed on crops). By comparing the aphid genome with that of the spider mite, it seems that the bacterial genes moved first into the insects and from these were taken up by the spider mite.

The name gives it away: spider mites make webs, for protection against predators and as a barrier against bad weather. However, their webs are different to those made by spiders: the genome sequence has revealed 17 genes involved in making web proteins. These proteins make thinner fibres, but seem to be slightly more resistant to mechanical forces than other natural materials.

All these secrets came out of a very small genome - only 90 megabases (the fruit fly genome has 180 megabases; the human genome has 3,000 megabases). It is, indeed, the smallest arthropod genome sequenced so far, and reveals a remarkable evolutionary history: the spider mite has lost many genes that are shared amongst arthropods, but has accumulated species-specific genes, such as those that give it the ability to withstand toxins and pesticides.

The Portuguese scientists were involved in analysing immunity-related genes found in the spider mite genome. The spider mite belongs to the Chelicerata family, the second largest group of terrestrial animals. Chelicerates include spiders, scorpions and ticks. Chelicerates and insects make up the Arthropods. The spider mite is the first chelicerate to have its entire genome sequenced and analysed.

Ana Godinho | EurekAlert!
Further information:
http://www.igc.gulbenkian.pt

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>