Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Speed trap for fish catches domestic trout moving too slow

11.03.2014

Wimpy fish call into question conservation value of hatcheries

Washington State University researchers have documented dramatic differences in the swimming ability of domesticated trout and their wilder relatives. The study calls into question the ability of hatcheries to mitigate more than a century of disturbances to wild fish populations.


Kristy Bellinger has documented dramatic differences in the swimming ability of hatchery trout and their wilder relatives.

Credit: Shelly Hanks, Washington State University

Kristy Bellinger, who did the study for her work on a Ph.D. in zoology, said traditional hatcheries commonly breed for large fish at the cost of the speed they need to escape predators in the wild.

"The use of hatcheries to support declining wild salmon and steelhead is controversial," said Bellinger. "They have a role as being both a part of the solution in supplementing depleted stocks and as being a hindrance to boosting natural populations, as they often produce fish that look and behave differently from their wild relatives."

... more about:
»ability »domestic »populations »steelhead »stocks »trap

Bellinger conducted the study with Gary Thorgaard, a nationally recognized fish geneticist and professor in WSU's School of Biological Sciences, and her advisor, Associate Professor Patrick Carter. Their work is published in the journal Aquaculture.

The study used a sort of speed trap for fish, a meter-long plastic tank filled with water and fitted with electronic sensors. Over 10 weeks, Bellinger repeatedly ran 100 clonal (genetically similar) hatchery-raised and semi-wild rainbow trout through the tank, clocking their speed and monitoring their growth from week to week. The clonal rainbow trout were propagated on the WSU campus.

The domesticated fish tended to grow faster. But while increased size is generally seen as a sign of fitness, the researchers saw that wasn't the case as far as speed is concerned. "The highly domesticated fish have bigger body sizes but slower swim speeds compared to the more wild lines that are smaller," said Bellinger. "It is intuitive to think that the more you feed them, the more they're going to grow, the faster they're going to be, and that's what we see within each clonal line. However, between the lines, the domesticated fish were larger but slower sprinters."

Over the past century, hatcheries have become a mainstay of recreational fishing, providing millions of trout and other salmonids to lakes and streams. More recently, hatcheries have come to be seen as tools in conserving native stocks. The state of Washington has more than 200 hatcheries, with most producing salmon and steelhead, an ocean-running trout, and about one-fourth producing trout and other game fish.

Hatchery managers, said Bellinger, tend to select for large fish.

"Fish managers want the biggest bang for their buck," she said. "But if increased size is a tradeoff of sprint speed, as our data show, then we assume hatchery fish are being picked off by predators due to their slower speed, which makes the process of supplementing native fish with hatchery fish an inefficient tool for conservation and a waste of money."

Kristy Bellinger | EurekAlert!
Further information:
http://www.wsu.edu/

Further reports about: ability domestic populations steelhead stocks trap

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>