Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soybean adoption came early by many cultures, archaeologists say

18.11.2011
Domestication occurred beyond China's borders and may provide a roadmap to making better crops

Human domestication of soybeans is thought to have first occurred in central China some 3,000 years ago, but archaeologists now suggest that cultures in even earlier times and in other locations adopted the legume (Glycine max).

Comparisons of 949 charred soybean samples from 22 sites in northern China, Japan and South Korea -- found in ancient households including hearths, flooring and dumping pits -- with 180 modern charred and unburned samples were detailed in the Nov. 4 edition of the online journal PLoS ONE, a publication of the Public Library of Science. The findings, say lead author Gyoung-Ah Lee, an archaeologist at the University of Oregon, add a new view to long-running assumptions about soybean domestication that had been based on genetic and historical records.

"Preserved beans have been carbonized, and that distorts the sizes," Lee said. "So we experimented with modern soybeans, charring them to compare them with historical samples. All the different sizes and shapes of soybeans may indicate different efforts in different times by different cultural groups in different areas."

Experts argue that larger beans reflect domestication, but the transition zone between smaller wild-type soybeans and larger hybridized versions is not understood, Lee said. Small-seeded soybeans indicating wild-type soybeans date to 9,000 years ago. Historical evidence to date shows a close relationship between soybeans and use in China during the Zhou Dynasty, about 2,000 years ago. The new study moves domestication back to perhaps 5,500 years ago.

"Soybeans appeared to be linked to humans almost as soon as villages were established in northern China," said co-author Gary Crawford, a professor of anthropology at the University of Toronto Mississauga, in a news release. "Soybean seems to be a plant that does well in human-impacted habitats. In turn, humans began to learn how tasty soybean was and how useful it was."

Today, of course, soybeans are used as livestock feed and to make cooking oil, tofu, tempeh, edamame and protein powder for human consumption.

The new archaeological evidence, Lee says, should be a springboard for archaeologists, crop scientists and plant geneticists to collaborate on understanding cultural contributions, which may lead them to better soybean characteristics. Cultural knowledge, she said, could fill in gaps that relate to domestication and genetic changes of the legume.

"I think one contribution that archaeologists can make is how peoples in ancient times contributed to our heritage of this viable crop and how we can trace their efforts and the methods to help guide us to make even better crops today," Lee said.

In Lee's homeland of South Korea, the research team uncovered evidence for a cultural selection for larger sized soybeans at 3,000 years ago. The evidence for such dating, which also surfaced in Japan, indicates that the farming of soybeans was much more widespread in times much earlier than previously assumed, researchers concluded.

Co-authors with Lee and Crawford were Li Liu of the Stanford University Archaeology Center, Yuka Sasaki of Paleo Labo Co. in Japan, and Xuexiang Chen of Shandong University in China.

The Australian Research Council, Social Sciences and Humanities Research Council of Canada, National Science Foundation of China and the National Science Foundation in the United States supported the research through various grants to the co-authors.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources: Gyoung-Ah Lee, assistant professor, anthropology department, 541- 346-4442, galee@uoregon.edu; Gary Crawford, professor, anthropology department, University of Toronto Mississauga, 905-569-4656, g.crawford@utoronto.ca

Links:

Audio with Gyoung-Ah Lee

What archaeology brings to soybean research: http://test.uonews.uoregon.edu/sites/all/files/uonews/uploads/Archaeological%20View.mp3

What the record now says: http://test.uonews.uoregon.edu/sites/all/files/uonews/uploads/Soybean%20Record%20for%20Now.mp3

A need for interdisciplinary research: http://test.uonews.uoregon.edu/sites/all/files/uonews/uploads/Why%20this%20matters.mp3

UO Department of Anthropology: http://pages.uoregon.edu/anthro/

About Gyoung-Ah Lee: http://pages.uoregon.edu/anthro/people/faculty/core-faculty/#lee

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>