Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southern pine beetle impacts on forest ecosystems

18.05.2012
Shortleaf pine-hardwood ecosystem restoration following insect outbreak

Research by USDA Forest Service Southern Research Station (SRS) scientists shows that the impacts of recent outbreaks of southern pine beetle further degraded shortleaf pine-hardwood forest ecosystems in the southern Appalachian region. The authors suggest that cutting and burning these sites reduces heavy fuel loads, improves soil nutrient status, and opens the canopy for restoration of these shortleaf pine communities.

In an article published in the June issue of journal Forest Ecology and Management, research ecologist Katherine Elliott and fellow scientists from the SRS Coweeta Hydrologic Laboratory examine the effects of three treatments to restore shortleaf pine-hardwood forests in areas where southern pine beetle attacks have killed most of the overstory pines.

Historically, frequent fire maintained the pine-hardwood ecosystems of the southern Appalachians as open grassy savannas with widely spaced oaks and shortleaf pines, a grassy understory, and relatively clear midstory. The interactions of past land use, fire exclusion, drought, and southern pine beetle outbreaks have severely impacted these ecosystems.

"Over the past century, these ecosystems have been on a trajectory of increased loss of pines in the overstory, lack of regeneration of both pines and oaks, loss of ground layer plants, and the expansion of the evergreen shrub mountain laurel in the midstory," says Elliott. "The latest outbreak of southern pine beetle, a native insect, killed more overstory pines, further damaging the ecosystem while adding fuel for fire."

For the study, the researchers selected eight 12 to 15-acre study sites in pine-hardwood ecosystems where a large number of the pines had been killed by southern pine beetle. They tested the effects of burning only, cutting and burning on sites with droughty soils, and cutting and burning on sites with medium soil moisture. Two years after the treatments, they reported increased soil nutrient availability, greater herbaceous plant cover and diversity, and more native bluestem grasses.

Unfortunately, they found only a few pine seedlings in the understory after the treatments. "In our study, poor pine regeneration may have been due to drought, poor seed production, and hardwood competition in the understory," says Elliott. "Poor seed production was not unexpected, since southern pine beetles killed almost all of the overstory pines before the treatments."

The researchers found that though oak regeneration increased on all the burned sites, other hardwood species increased as well. The researchers suggest that without further intervention, oaks will not succeed into the overstory due to competition from faster growing hardwoods.

This study showed that cutting followed by prescribed fire can reduce fuel loads, increase soil nutrient availability, open the canopy by reducing trees in the overstory, and stimulate vegetative growth. These cut-and-burn treatments have positioned these degraded ecosystems on a restoration trajectory.

"Further silvicultural treatments are needed to fully restore these sites to shortleaf pine/bluestem communities," says Elliott. "Additional follow-up treatments could include planting pine seedlings, using thinning or herbicides to reduce competition from faster growing red maple and sassafras sprouts and shrubs, and repeated burning to maintain open woodland for native grass and other plant cover."

"Land managers need information on treatment options that will reduce the heavy fuel from dead and dying trees, and they need information on how to most effectively restore these forests," says Elliott. "We will continue to work with land managers on applying and refining these treatments in their efforts to fully restore shortleaf pine/native bluestem grass ecosystems."

"Without the partnership and support from the National Forests of North Carolina, Tennessee, and Georgia this research would not be possible or as relevant," she adds. "For this study, the Ocoee Ranger District, Cherokee National Forest was responsible for implementing the treatments and they worked closely with the researchers to make it all happen." In return, researchers provide the information to the National Forest partners and others by onsite tours and workshops.

This research was partially funded by the Joint Fire Science Program, which supports scientific research on wildland fires and distributes results to help policymakers, fire managers and practitioners make sound decisions.

Access the full text of the article: http://www.srs.fs.usda.gov/pubs/40511

For more information: Katherine Elliot at 828-524-2128, x110 or kelliot@fs.fed.us

Headquartered in Asheville, N.C., the Southern Research Station is comprised of more than 120 scientists and several hundred support staff who conduct natural resource research in 20 locations across 13 southern states (Virginia to Texas). The Station's mission is "…to create the science and technology needed to sustain and enhance southern forest ecosystems and the benefits they provide." Learn more about the Southern Research Station at: http://www.srs.fs.usda.gov/

Katherine Elliot | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>