Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soil May Harbor Answer to Reducing Arsenic in Rice

03.05.2013
Harsh Bais and Janine Sherrier of the University of Delaware’s Department of Plant and Soil Sciences are studying whether a naturally occurring soil bacterium, referred to as UD1023 because it was first characterized at the University, can create an iron barrier in rice roots that reduces arsenic uptake.

Rice, grown as a staple food for a large portion of the world’s population, absorbs arsenic from the environment and transfers it to the grain. Arsenic is classified as a poison by the National Institutes of Health and is considered a carcinogen by the National Toxicology Program.

Long-term exposure to arsenic has been associated with skin, lung, bladder, liver, kidney and prostate cancers, and low levels can cause skin lesions, diarrhea and other symptoms.

The risks of arsenic in rice were recently highlighted in the national press, when arsenic was detected in baby foods made from rice. In regions of the world where rice is the major component of the human diet, the health of entire communities of people can be negatively impacted by arsenic contamination of rice.

Arsenic may occur naturally in the soil, as it does in many parts of Southeast Asia, or it may be a result of environmental contamination. Despite the health risks arsenic in rice poses to millions of people around the world, there are currently no effective agricultural methods in use to reduce arsenic levels.

Sherrier, professor, and Bais, associate professor, are investigating whether UD1023 — which is naturally found in the rhizosphere, the layer of soil and microbes adjacent to rice roots — can be used to block the arsenic uptake. Bais first identified the bacterial species in soil samples taken from rice fields in California.

The pair’s preliminary research has shown that UD1023 can mobilize iron from the soil and slow arsenic uptake in rice roots, but the researchers have not yet determined exactly how this process works and whether it will lead to reduced levels of arsenic in rice grains.

“We have a bacterium that moves iron, and we want to see if creating an iron shield around the rice roots will slow arsenic movement into other parts of the plant,” Bais said.

Sherrier and Bais, who received a 2012 seed grant for the project from Delaware’s National Science Foundation Experimental Program to Stimulate Competitive Research (EPSCoR), ultimately want to determine how UD1023 slows arsenic movement into rice roots and whether it will lead to reduced levels of arsenic in the rice grains, the edible portion of the plant.

“That is the most important part,” Bais said. “We don’t know yet whether we can reduce arsenic in the grains or reduce the upward movement of arsenic towards the grain, but we’re optimistic.”

Bais says that, if successful, the project could lead to practical applications in agriculture.

“The implications could be tremendous,” he said. “Coating seeds with bacteria is very easy. With this bacteria, you could implement easy, low-cost strategies that farmers could use that would reduce arsenic in the human food chain.”

Andrea Boyle Tippett | Newswise
Further information:
http://www.udel.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>