Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart application of surfactants gives sustainable agriculture

05.06.2014

Anton Fagerström at Malmö University, Sweden, has investigated the interaction between the plant's barrier, plant protection products and adjuvants that are added to increase the effect of the plant protection product. The results of this research can be applied to minimise the use of plant protection products in agriculture.

If the agricultural industry is to be competitive and profitable, we need plant protection products that protect the plants against fungal and insect attack. However, plant protection products have a number of negative effects on the environment. Therefore, to generate a sustainable agriculture, farmers must optimise their use of plant protection products.

"We have known for some time that surfactants, surface-acting agents, reinforce the effect of plant protection products. But we know very little about the underlying mechanisms that affect the plant leaf barrier and thus also uptake of the active substances," comments Anton Fagerström, a researcher at Malmö University, Sweden

Anton Fagerström's research has focused on the interaction between the cuticle which is the outermost layer of the plant leaf, and plant protection products and surfactants, surface-acting agents that are added to increase the effect of the plant protection product. The barrier that protects the plant and prevents uptake of foreign elements is situated in the cuticle.

"The barrier is highly effective and protects the plant even though it is unbelievably thin.
We have developed a new model to determine how the structure of the barrier changes when surfactants and water are added at various temperatures. This increases our understanding of how surfactants act."

Furthermore, Anton Fagerström has studied cuticle uptake of plant protection products and which properties in a mixture that affect uptake.

In the future, the results of this research could enable selection of the most effective surfactant for a particular plant protection product, and the most effective plant protection product for a particular plant. Thus minimising the amounts of plant protection products used in the agricultural industry.

"The future demands sustainable agriculture that can feed the world's ever-increasing population. To succeed, the research must continue."

Contact: Anton Fagerström; Tel.: +46 40 – 665 7956 or +46 70 – 497 8089; anton.fagerstrom@mah.se

Weitere Informationen:

http://dspace.mah.se/handle/2043/17029 Effects of surfactant adjuvants on plant leaf cuticle barrier properties

Charlotte Löndahl |

Further reports about: Smart agriculture farmers insect leaf properties substances temperatures uptake

More articles from Agricultural and Forestry Science:

nachricht Improving artichoke root development, transplant quality
21.07.2016 | American Society for Horticultural Science

nachricht Genome of 6,000-year-old barley grains sequenced for first time
19.07.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>