Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shredding corn silage could produce more ethanol at less cost

25.02.2009
A Purdue University researcher has found a way to get more bang for fewer bucks when it comes to processing cellulosic material to make ethanol.

By shredding corn stover instead of chopping, as is commonly done, about 40 percent less energy is needed to gain access to more of the material stored in the plant.

Dennis Buckmaster, an associate professor of agricultural and biological engineering, said that by shredding corn stover there is better access to cellulose, which is the main part of plant cell walls necessary to make ethanol.

"You can't just use a big chunk of cellulosic material. You need small particles," Buckmaster said. "What we want is access to what's in there."

Using a technique employed in food processing and other industries to measure cell damage, Buckmaster put chopped and shredded corn stalks in water and compared the amount of leachates in each solution. A leachate is any plant substance that is dissolved out of a plant or soil when it is placed in water.

According to Buckmaster's results, shredded corn stalks produced about 11 percent more leachates than chopped and 5 percent more than stalks that had been chopped and put through a roller. Buckmaster said those differences are all the more impressive when considering the energy savings tied to shredding, giving ethanol makers potentially more cellulose for less cost.

Buckmaster said that shredding corn stalks increases the surface area of the plant material. And because stalks can be shredded along the grain of the plants, like splitting a log with an ax, it takes less energy. The current chopping method, he said, is like putting the log on its side and trying to chop it with the same axe.

"It takes much less force to shear the plant material in the direction of the fibers," Buckmaster said.

Plants can be chopped again after storage to increase surface area, but that would raise energy costs beyond what is already spent at harvest, he said.

Shredding corn stalks produced pieces of different sizes, but even the largest pieces of shredded material produced about as many leachates as the smallest shredded pieces. When comparing the chopped materials, the largest pieces produced fewer leachates than the smallest pieces.

"The shredded material, even with the long particles, gives you more access to plant nutrients," Buckmaster said. "You can use chopping to reduce the size of particles, but that takes more energy and is not as efficient as shredding at harvest."

Buckmaster's study was published in the last 2008 edition of Transactions of the American Society of Agricultural and Biological Engineers. His research was funded through the U.S. Department of Agriculture's Cooperative State Research, Education and Extension Service.

Buckmaster said the next step in his research is to compare shredded and chopped cellulosic material to see which produces more ethanol. He also is working to design machinery that can be used by farmers to shred plant materials during harvest instead of using current chopping mechanisms.

Writer: Brian Wallheimer, (765) 496-2050, bwallhei@purdue.edu
Source: Dennis Buckmaster, (765) 496-9512, dbuckmas@purdue.edu
Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>