Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shatter-resistant brassicas

28.05.2009
An international team of scientists has cracked the problem of pod shatter in brassica crops such as oilseed rape.

Just before harvest, oilseed rape pods are prone to shatter, causing a 10-25% loss of seeds and up to 70% in some cases.

"By artificially producing a hormone in a specific region of the fruit, we have stopped the fruit opening in the related model plant Arabidopsis, completely sealing the seeds inside," says Dr Lars Østergaard from the John Innes Centre. "We need to refine the process for use in agriculture to reduce seed loss but still allowing them to be easily harvested.

The scientists discovered that the absence of the hormone auxin in a layer of cells in the fruit is necessary for the fruit to open. Two stripes of tissue form where no auxin is present, and these separate to open the pod.

It is already known that proper plant development, such as organ growth and patterning, requires specific hormones to accumulate in specific regions. This is the first time that removal of a hormone has been found to be important for cell fate and growth.

Oilseed rape is grown for its tiny black oil-containing seeds, prized for cooking oil and margarines low in saturated fat, and increasingly for biodiesel. The meal that remains after oil extraction is also used as a high protein animal feed.

Brassica plants normally disperse their seeds by a pod-shattering mechanism. Although this mechanism is an advantage in nature, it is one of the biggest problems in farming oilseed rape. As well as losing valuable seeds, it results in runaway 'volunteer' seedlings that contaminate the next crop in the rotation cycle.

If rape seeds are harvested early to get round the problem, immature seeds may be collected which are of an inferior quality.

Oilseed rape is relatively undeveloped in breeding terms when compared to wheat and other crops. It retains characteristics of a wild plant including maximising seed dispersal. JIC scientists are also researching genetic solutions to reduce pod shatter and to improve breeding of the crop.

The John Innes Centre is an institute of the Biotechnology and Biological Sciences Research Council (BBSRC).

Andrew Chapple | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>