Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage Sludge Builds Organic Matter in Depleted Soils

15.03.2010
A sustainable destination for sewage sludge is an important challenge worldwide. Soil application is one option; however the impact of toxic metallic ions, pathogenic organisms and other organic contaminants must be carefully monitored, requiring long-term field experiments to study fate of contaminants.

Sewage sludge can be a source of plant nutrients, such as nitrogen, phosphorus, and soil organic matter. This aspect is more relevant in tropical regions, where organic matter decomposition is accelerated due to higher microbial activity. Soil organic matter plays a particularly crucial role in Brazil, with its predominance of soils with high clay to mineral ratios, which are especially poor with organic matter.

Researchers lead by Ladislau Martin-Neto, from the Brazilian Agricultural Research Corporation- Embrapa, have analyzed the impacts of sewage sludge applications on soil organic matter in a long-term experiment, conducted by Professor Wanderley Melo, from the State University of Sao Paulo-UNESP, using chemical and spectroscopic approaches. Specifically, they evaluate changes in total soil organic carbon and in the chemical characteristics of the soil organic matter and its main constituents known as humic substances (from humus origin). Results were published in the January-February issue of the Soil Science Society of America Journal. The journal is published by the Soil Science Society of America.

The sewage sludge applications to two soils classes (clay and sandy soils, from tropical areas of Brazil) during seven consecutive years caused an increase in organic content in both soils, but with higher relative increase in sandy soils. This is an important result for tropical soils where it is hard to maintain and/or increase soil organic matter, due to very intense microbial activity, generally stimulated by combination of highs temperature and humidity.

Spectroscopic analysis detected chemical modifications in soil organic matter and humic acids, likely due to incorporation of less transformed organic compounds from sewage sludge to the indigenous organic matter. Instead of becoming an organic material that could easily convert to CO2 and augment greenhouse gas emission, the sewage sludge incorporated as humic substances, a more recalcitrant class of soil chemical compound with a longer lifetime in soils.

These findings support the humic substance model of relatively small molecules held together by weak forces, such as hydrogen and hydrophobic bonds, with a pseudo high molecular weight, instead of the traditional macromolecule model. Additional field and laboratory experiments are fundamental to improve the understanding of soil organic matter dynamics and tentative to carbon management in soils, including support to desired soil carbon sequestration conditions.

Funding was provided by the Sao Paulo Research Foundation, the Brazilian National Council for Scientific and Technological Development, and the Optics and Photonics Research Center.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://soil.scijournals.org/cgi/content/full/74/1/94.

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, which opened July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | Newswise Science News
Further information:
http://www.sciencesocieties.org

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>