Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Semi-Dwarf” Trees May Enable a Green Revolution for Some Forest Crops

The same “green revolution” concepts that have revolutionized crop agriculture and helped to feed billions of people around the world may now offer similar potential in forestry, scientists say, with benefits for wood, biomass production, drought stress and even greenhouse gas mitigation.

Researchers at Oregon State University recently outlined the latest findings on reduced height growth in trees through genetic modification, and concluded that several advantageous growth traits could be achieved for short-rotation forestry, bioenergy, or more efficient water use in a drier, future climate.

This approach runs contrary to conventional wisdom and centuries of tree breeding, which tried to produce forest trees that grow larger and taller, the researchers note. But just as the green revolution in agriculture helped crops such as wheat and rice produce more food on smaller, sturdier plants, the opportunities in forestry could be significant.

“Research now makes it clear that genetic modification of height growth is achievable,” said Steven Strauss, an OSU professor of forest genetics. “We understand the genes and hormones that control growth not only in crop plants, but also in trees. They are largely the same.”

In a study published in Plant Physiology, researchers inserted a number of genes into poplar trees, a species often used for genetic experiments, and valuable for wood, environmental and energy purposes. They described 29 genetic traits that were affected, including growth rate, biomass production, branching, water-use efficiency, and root structure. All of the changes were from modified gibberellins, plant hormones that influence several aspects of growth and development.

The range and variation in genetic modification can be accurately observed and selected for, based on hormone and gene expression levels, to allow production of trees of almost any height.

For example, for ornamental purposes it would be possible to grow a miniature poplar, or even a Douglas-fir, as a potted plant.

And because height growth, in competition for sunlight, is a primary mechanism that trees use to compete for survival, there would be reduced concern about use of such genetically modified trees in a natural environment. On a long-term basis they would be unable to compete, shaded by larger trees and ultimately they would die out.

Scientists could also produce trees that might have a larger root mass, which should make them more drought-resistant, increase water use efficiency, increase elimination of soil toxins and better sequester carbon. This could be useful for greenhouse gas mitigation, bioremediation or erosion control.

Smaller trees could also be selected that have sturdier trunks for some uses in short-rotation plantation forestry, significantly reducing the number of trees blown down by wind. And shorter, thicker and straighter trunks might create higher-value wood products in many tree species, Strauss said.

Some semi-dwarf trees produced by conventional tree breeding techniques are already an important part of the horticulture industry, allowing easier harvesting of fruit and higher yields. Genetic modification could add new characteristics and more scientific precision to the process, researchers said.

“The main limitation is the onerous regulatory structure for genetically-modified plants in the United States,” Strauss said. “Even short, safe and beneficial trees are unlikely to be able to bear the high costs and red tape inherent to obtaining regulatory approval.”

This research has been supported by the U.S. Department of Energy, U.S. Department of Agriculture, National Science Foundation, and industry members of the Tree Biosafety and Genomics Research Cooperative at OSU.

Steven Strauss
Professor of Forest Genetics
Oregon State University

Steven Strauss | Newswise Science News
Further information:

Further reports about: Green IT OSU Trees crop plant crops genetic modification plant hormone poplar tree

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>