Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Semi-Dwarf” Trees May Enable a Green Revolution for Some Forest Crops

01.10.2012
The same “green revolution” concepts that have revolutionized crop agriculture and helped to feed billions of people around the world may now offer similar potential in forestry, scientists say, with benefits for wood, biomass production, drought stress and even greenhouse gas mitigation.

Researchers at Oregon State University recently outlined the latest findings on reduced height growth in trees through genetic modification, and concluded that several advantageous growth traits could be achieved for short-rotation forestry, bioenergy, or more efficient water use in a drier, future climate.

This approach runs contrary to conventional wisdom and centuries of tree breeding, which tried to produce forest trees that grow larger and taller, the researchers note. But just as the green revolution in agriculture helped crops such as wheat and rice produce more food on smaller, sturdier plants, the opportunities in forestry could be significant.

“Research now makes it clear that genetic modification of height growth is achievable,” said Steven Strauss, an OSU professor of forest genetics. “We understand the genes and hormones that control growth not only in crop plants, but also in trees. They are largely the same.”

In a study published in Plant Physiology, researchers inserted a number of genes into poplar trees, a species often used for genetic experiments, and valuable for wood, environmental and energy purposes. They described 29 genetic traits that were affected, including growth rate, biomass production, branching, water-use efficiency, and root structure. All of the changes were from modified gibberellins, plant hormones that influence several aspects of growth and development.

The range and variation in genetic modification can be accurately observed and selected for, based on hormone and gene expression levels, to allow production of trees of almost any height.

For example, for ornamental purposes it would be possible to grow a miniature poplar, or even a Douglas-fir, as a potted plant.

And because height growth, in competition for sunlight, is a primary mechanism that trees use to compete for survival, there would be reduced concern about use of such genetically modified trees in a natural environment. On a long-term basis they would be unable to compete, shaded by larger trees and ultimately they would die out.

Scientists could also produce trees that might have a larger root mass, which should make them more drought-resistant, increase water use efficiency, increase elimination of soil toxins and better sequester carbon. This could be useful for greenhouse gas mitigation, bioremediation or erosion control.

Smaller trees could also be selected that have sturdier trunks for some uses in short-rotation plantation forestry, significantly reducing the number of trees blown down by wind. And shorter, thicker and straighter trunks might create higher-value wood products in many tree species, Strauss said.

Some semi-dwarf trees produced by conventional tree breeding techniques are already an important part of the horticulture industry, allowing easier harvesting of fruit and higher yields. Genetic modification could add new characteristics and more scientific precision to the process, researchers said.

“The main limitation is the onerous regulatory structure for genetically-modified plants in the United States,” Strauss said. “Even short, safe and beneficial trees are unlikely to be able to bear the high costs and red tape inherent to obtaining regulatory approval.”

This research has been supported by the U.S. Department of Energy, U.S. Department of Agriculture, National Science Foundation, and industry members of the Tree Biosafety and Genomics Research Cooperative at OSU.

Steven Strauss
Professor of Forest Genetics
Oregon State University
541-737-6578
steve.strauss@oregonstate.

Steven Strauss | Newswise Science News
Further information:
http://www.oregonstate.edu

Further reports about: Green IT OSU Trees crop plant crops genetic modification plant hormone poplar tree

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>