Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make turfgrass safer for animals, deadly for insects

07.09.2011
The right combination of compounds produced by a beneficial fungus could lead to grasses that require fewer pesticides and are safer for wildlife and grazing animals, according to Purdue University scientists.

Neotyphodium is a fungus called an endophyte. It lives symbiotically, feeding off many species of grasses while providing the grass with protection from insects such as black cutworm. But Neotyphodium also can be toxic to animals based on the types of alkaloids it produces. It was once a serious concern for pasture managers.

Scientists have previously eliminated alkaloid profiles that caused toxicity in livestock, meaning pasture managers could feed their livestock without making them sick. But in making the grasses safe for animals, their susceptibility to insects came into question.

"These endophytes have changed everything for farmers who let their animals graze," said Douglas Richmond, a Purdue assistant professor of turfgrass entomology and applied ecology. "But they created another potential problem."

Richmond worked with researchers in New Zealand to assemble a series of Neotyphodium endophytes that are safe for livestock consumption and tested them to see which would also act as natural insecticides. They found a relatively few strains of the fungus that meet both criteria by producing two key alkaloid toxins - N-acetyl norloline and peramine which are a product of the fungal metabolism. The scientists determined they were effective by characterizing insect growth and survival on grasses with different alkaloid profiles.

Richmond said that grasses naturally infected with the desired endophyte strains can now be propagated for commercial production.

"Both are relatively safe for mammals and other grazing wildlife," Richmond said. "Now the seed industry can put these endophytes into turf and pasture grasses and not worry about potential non-target effects."

Those endophytes also mean that farmers, golf course turf managers and even homeowners caring for their lawns could use fewer insecticides to manage their grasses.

"I think this is going to be very important for sustainability. It's going to decrease the footprint of cultured turf and pasture grasses," said Richmond, whose results were published in the Journal of Environmental Entomology. "And if you like having wildlife around having deer come up to your lawn if you live near the woods this is a benefit because it's safe for those animals."

Richmond said he is working with a New Zealand company, AgResearch USA Ltd., that develops turfgrass varieties to include these novel endophytes for sale in the U.S. turfgrass market.

The Midwest Regional Turf Foundation, AgResearch USA Ltd. and internal Purdue University funding supported the research.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110906RichmondFungi.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>