Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Bacteria That Increase Plant Growth

28.01.2009
Findings have implications for increasing biomass for the production of biofuels

Through work originally designed to remove contaminants from soil, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and their Belgium colleagues at Hasselt University have identified plant-associated microbes that can improve plant growth on marginal land.

The findings, published in the February 1, 2009 issue of Applied and Environmental Microbiology, may help scientists design strategies for sustainable biofuel production that do not use food crops or agricultural land.

“Biofuels are receiving increased attention as one strategy for addressing the dwindling supplies, high costs, and environmental consequences of fossil fuels,” said Brookhaven biologist and lead author Daniel (Niels) van der Lelie, who leads the Lab’s biofuels research program. “But competition with agricultural resources is an important socioeconomic concern.”

Ethanol produced by fermenting corn, for example, diverts an important food source — and the land it’s grown on — for fuel production. A better approach would be to use non-food plants, ideally ones grown on non-agricultural land, for biofuel production.

Van der Lelie’s team has experience with plants growing on extremely marginal soil — soil contaminated with heavy metals and other industrial chemicals. In prior research, his group has incorporated the molecular “machinery” used by bacteria that degrade such contaminants into microbes that normally colonize poplar trees, and used the trees to clean up the soil. An added benefit, the scientists observed, was that the microbe-supplemented trees grew faster — even when no contaminants were present.

“This work led to our current search for bacteria and the metabolic pathways within them that increase biomass and carbon sequestration in poplar trees growing on marginal soils, with the goal of further improving poplar for biofuel production on non-agricultural lands,” said co-author Safiyh Taghavi.

In the current study, the scientists isolated bacteria normally resident in poplar and willow roots, which are known as endophytic bacteria, and tested selected strains’ abilities to increase poplar growth in a controlled greenhouse environment. They also sequenced the genes from four selected bacterial species and screened them for the production of plant-growth promoting enzymes, hormones, and other metabolic factors that might help explain how the bacteria improve plant growth.

“Understanding such microbial-plant interactions may yield ways to further increase biomass,” van der Lelie said.

The plants were first washed and surface-sterilized to eliminate the presence of soil bacteria so the scientists could study only the bacteria that lived within the plant tissues – true endophytic bacteria. The plant material was then ground up so the bacterial species could be isolated. Individual strains were then supplemented with a gene for a protein that “glows” under ultraviolet light, and inoculated into the roots of fresh poplar cuttings that had been developing new roots in water. The presence of the endophytic bacteria was confirmed by searching for the glowing protein. Some bacterial species were also tested for their ability to increase the production of roots in the poplar cuttings by being introduced during the rooting process rather than afterward.

The results
The scientists identified 78 bacterial endophytes from poplar and willow. Some species had beneficial effects on plant growth, others had no effect, and some resulted in decreased growth. In particular, poplar cuttings inoculated with Enterobacter sp. 638 and Burkholderia cepacia BU72 repeatedly showed the highest increase in biomass production — up to 50 percent — as compared with non-inoculated control plants. Though no other endophyte species showed such dramatic effects, some were effective in promoting growth in particular cultivars of poplar.

In the studies specifically looking at root formation, non-inoculated plants formed roots very slowly. In contrast, plant cuttings that were allowed to root in the presence of selected endophytes grew roots and shoots more quickly.

The analysis of genes and metabolically important gene products from endophytes resulted in the identification of many possible mechanisms that could help these microbes thrive within a plant environment, and potentially affect the growth and development of their plant host. These include the production of plant-growth-promoting hormones by the endophytic bacteria that stimulate the growth of poplar on marginal soils.

The scientists plan to conduct additional studies to further elucidate these mechanisms. “These mechanisms are of prime importance for the use of plants as feedstocks for biofuels and for carbon sequestration through biomass production,” van der Lelie said.

This study was funded by the Office of Biological and Environmental Research within DOE’s Office of Science, by Brookhaven’s Laboratory Directed Research and Development Fund, and by the Flanders Science Foundation and the Institute for the Promotion of Innovation by Science and Technology in Flanders, both in Belgium.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=874

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>