Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Bacteria That Increase Plant Growth

28.01.2009
Findings have implications for increasing biomass for the production of biofuels

Through work originally designed to remove contaminants from soil, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and their Belgium colleagues at Hasselt University have identified plant-associated microbes that can improve plant growth on marginal land.

The findings, published in the February 1, 2009 issue of Applied and Environmental Microbiology, may help scientists design strategies for sustainable biofuel production that do not use food crops or agricultural land.

“Biofuels are receiving increased attention as one strategy for addressing the dwindling supplies, high costs, and environmental consequences of fossil fuels,” said Brookhaven biologist and lead author Daniel (Niels) van der Lelie, who leads the Lab’s biofuels research program. “But competition with agricultural resources is an important socioeconomic concern.”

Ethanol produced by fermenting corn, for example, diverts an important food source — and the land it’s grown on — for fuel production. A better approach would be to use non-food plants, ideally ones grown on non-agricultural land, for biofuel production.

Van der Lelie’s team has experience with plants growing on extremely marginal soil — soil contaminated with heavy metals and other industrial chemicals. In prior research, his group has incorporated the molecular “machinery” used by bacteria that degrade such contaminants into microbes that normally colonize poplar trees, and used the trees to clean up the soil. An added benefit, the scientists observed, was that the microbe-supplemented trees grew faster — even when no contaminants were present.

“This work led to our current search for bacteria and the metabolic pathways within them that increase biomass and carbon sequestration in poplar trees growing on marginal soils, with the goal of further improving poplar for biofuel production on non-agricultural lands,” said co-author Safiyh Taghavi.

In the current study, the scientists isolated bacteria normally resident in poplar and willow roots, which are known as endophytic bacteria, and tested selected strains’ abilities to increase poplar growth in a controlled greenhouse environment. They also sequenced the genes from four selected bacterial species and screened them for the production of plant-growth promoting enzymes, hormones, and other metabolic factors that might help explain how the bacteria improve plant growth.

“Understanding such microbial-plant interactions may yield ways to further increase biomass,” van der Lelie said.

The plants were first washed and surface-sterilized to eliminate the presence of soil bacteria so the scientists could study only the bacteria that lived within the plant tissues – true endophytic bacteria. The plant material was then ground up so the bacterial species could be isolated. Individual strains were then supplemented with a gene for a protein that “glows” under ultraviolet light, and inoculated into the roots of fresh poplar cuttings that had been developing new roots in water. The presence of the endophytic bacteria was confirmed by searching for the glowing protein. Some bacterial species were also tested for their ability to increase the production of roots in the poplar cuttings by being introduced during the rooting process rather than afterward.

The results
The scientists identified 78 bacterial endophytes from poplar and willow. Some species had beneficial effects on plant growth, others had no effect, and some resulted in decreased growth. In particular, poplar cuttings inoculated with Enterobacter sp. 638 and Burkholderia cepacia BU72 repeatedly showed the highest increase in biomass production — up to 50 percent — as compared with non-inoculated control plants. Though no other endophyte species showed such dramatic effects, some were effective in promoting growth in particular cultivars of poplar.

In the studies specifically looking at root formation, non-inoculated plants formed roots very slowly. In contrast, plant cuttings that were allowed to root in the presence of selected endophytes grew roots and shoots more quickly.

The analysis of genes and metabolically important gene products from endophytes resulted in the identification of many possible mechanisms that could help these microbes thrive within a plant environment, and potentially affect the growth and development of their plant host. These include the production of plant-growth-promoting hormones by the endophytic bacteria that stimulate the growth of poplar on marginal soils.

The scientists plan to conduct additional studies to further elucidate these mechanisms. “These mechanisms are of prime importance for the use of plants as feedstocks for biofuels and for carbon sequestration through biomass production,” van der Lelie said.

This study was funded by the Office of Biological and Environmental Research within DOE’s Office of Science, by Brookhaven’s Laboratory Directed Research and Development Fund, and by the Flanders Science Foundation and the Institute for the Promotion of Innovation by Science and Technology in Flanders, both in Belgium.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=874

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>