Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists ID Genes that Could Lead to Tough, Disease-Resistant Varieties of Rice

02.04.2014

For a new generation of grains for a warmer world

As the Earth’s human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater.


Wikimedia Commons photo by BluesyPete

A rice field in Sri Lanka. Michigan Tech scientists have discovered genes in rice that could help solve the world's hunger problem.

It won’t be enough to yield record harvests under perfect conditions. In an era of climate change, pollution and the global spread of pathogens, these new grains must also be able to handle stress. Now, researchers at Michigan Technological University have identified a set of genes that could be key to the development of the next generation of super rice.

A meta-data analysis by biologist Ramakrishna Wusirika and PhD student Rafi Shaik has uncovered more than 1,000 genes in rice that appear to play key roles in managing its response to two different kinds of stress: biotic, generally caused by infectious organisms like bacteria; and abiotic, caused by environmental agents, like nutrient deficiency, flood and salinity.

Traditionally, scientists have believed that different sets of genes regulated plants’ responses to biotic and abiotic stress. However, Wusirika and Shaik discovered that 1,377 of the approximately 3,800 genes involved in rice’s stress response played a role in both types stress. “These are the genes we think are involved in the cross talk between biotic and abiotic stesses,” said Wusirika.

About 70 percent of those “master” genes are co-expressive—they turn on under both kinds of stress. Typically, the others turn on for biotic stress and turn off for abiotic stress.

The scientists looked at the genes’ response to five abiotic stresses—drought, heavy metal contamination, salt, cold and nutrient deprivation—and five biotic stresses—bacteria, fungus, insect predation, weed competition and nematodes. A total of 196 genes showed a wide range of expressions to these stresses.

“The top genes are likely candidates for developing a rice variety with broad stress-range tolerance,” Wusirika said.

Next, they would like to test their findings. “We want to do experimental analysis to see if five or 10 of the genes work as predicted,” he said.

Their study is described in the paper, “Machine Learning Approaches Distinguish Multiple Stress Conditions using Stress-Resposive Genes and Identify Candidate Genes for Broad Resistance in Rice,” published in the January edition of Plant Physiology.

Marcia Goodrich | newswise
Further information:
http://www.mtu.edu

Further reports about: Physiology abiotic crops deficiency genes nematodes nutrient salinity

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>