Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Four-Leaf Clover Gene

28.06.2010
Ending a period of “bad luck” for clover researchers, scientists report finding the gene that turns ordinary three-leaf clovers into the coveted four-leaf types. Masked by the three-leaf gene and strongly influenced by environmental condition, molecular markers now make it possible to detect the presence of the gene for four-leaves and for breeders to work with it.

The results of the study, which also located two other leaf traits in the white-clover genome, were reported in the July/August 2010 edition of Crop Science, published by the Crop Science Society of America.

The other leaf traits, the red fleck mark and red midrib, a herringbone pattern that runs down the center of each leaflet in a bold red color, were mapped to nearby locations, resolving a century-old question as to whether these leaf traits were controlled by one gene or two separate genes.

White clover has many genes that affect leaf color and shape, and the three in the study were very rare. These traits can be strikingly beautiful, particularly if combined with other, and can turn clover into an ornamental plant for use in flower beds.

“This is a great time to be involved in white clover breeding” said Wayne Parrott, the senior researcher of the study at the University of Georgia. “We now have the tools to make it easier to breed important traits in this species which has historically proven to be a challenging plant to work with. In addition, we can hasten the development of new white clover cultivars bred for a variety of uses by screening new generations of plants for traits of interest before they even reach the field trial stage, significantly reducing the time and resources needed for new releases of white clover.”

The research team, from the University of Georgia and the Samuel Roberts Noble Foundation in Ardmore, Oklahoma, used both modern molecular-based genetics tools and classic breeding methods to solve the mystery of leaf trait inheritance in white clover. The researchers developed two populations of plants, grew them in separate locations, and extracted DNA to analyze molecular markers.

How these leaf traits are inherited and why white clover has so many rare leaf traits and has puzzled geneticists and breeders for many years. This research allows breeders to develop new ornamental varieties. It also sheds light on white clover genetics and evolution, which is still partly a mystery.

Though the four-leaf variety may be best known for bringing luck to its discoverer, white clover is also known a high quality forage, and for its presence as a ubiquitous lawn weed. Researchers are now one step closer to unlocking the genetic mechanisms behind four leaves in white clover and fixing this trait for breeding purposes.

Research is continuing at the University of Georgia and the Samuel Roberts Noble Foundation to map genes involved in other leaf traits and many other white clover traits. The current study was partially funded by the Samuel Roberts Noble Foundation and the Georgia Agricultural Experiment Stations.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://crop.scijournals.org/cgi/content/abstract/50/4/1260.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit http://crop.scijournals.org

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

Further reports about: Clover Four-Leaf Science TV crop crop science genetic mechanism molecular genetic

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>