Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Find Four-Leaf Clover Gene

28.06.2010
Ending a period of “bad luck” for clover researchers, scientists report finding the gene that turns ordinary three-leaf clovers into the coveted four-leaf types. Masked by the three-leaf gene and strongly influenced by environmental condition, molecular markers now make it possible to detect the presence of the gene for four-leaves and for breeders to work with it.

The results of the study, which also located two other leaf traits in the white-clover genome, were reported in the July/August 2010 edition of Crop Science, published by the Crop Science Society of America.

The other leaf traits, the red fleck mark and red midrib, a herringbone pattern that runs down the center of each leaflet in a bold red color, were mapped to nearby locations, resolving a century-old question as to whether these leaf traits were controlled by one gene or two separate genes.

White clover has many genes that affect leaf color and shape, and the three in the study were very rare. These traits can be strikingly beautiful, particularly if combined with other, and can turn clover into an ornamental plant for use in flower beds.

“This is a great time to be involved in white clover breeding” said Wayne Parrott, the senior researcher of the study at the University of Georgia. “We now have the tools to make it easier to breed important traits in this species which has historically proven to be a challenging plant to work with. In addition, we can hasten the development of new white clover cultivars bred for a variety of uses by screening new generations of plants for traits of interest before they even reach the field trial stage, significantly reducing the time and resources needed for new releases of white clover.”

The research team, from the University of Georgia and the Samuel Roberts Noble Foundation in Ardmore, Oklahoma, used both modern molecular-based genetics tools and classic breeding methods to solve the mystery of leaf trait inheritance in white clover. The researchers developed two populations of plants, grew them in separate locations, and extracted DNA to analyze molecular markers.

How these leaf traits are inherited and why white clover has so many rare leaf traits and has puzzled geneticists and breeders for many years. This research allows breeders to develop new ornamental varieties. It also sheds light on white clover genetics and evolution, which is still partly a mystery.

Though the four-leaf variety may be best known for bringing luck to its discoverer, white clover is also known a high quality forage, and for its presence as a ubiquitous lawn weed. Researchers are now one step closer to unlocking the genetic mechanisms behind four leaves in white clover and fixing this trait for breeding purposes.

Research is continuing at the University of Georgia and the Samuel Roberts Noble Foundation to map genes involved in other leaf traits and many other white clover traits. The current study was partially funded by the Samuel Roberts Noble Foundation and the Georgia Agricultural Experiment Stations.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://crop.scijournals.org/cgi/content/abstract/50/4/1260.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit http://crop.scijournals.org

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives. For more information, visit www.crops.org

Sara Uttech | Newswise Science News
Further information:
http://www.crops.org

Further reports about: Clover Four-Leaf Science TV crop crop science genetic mechanism molecular genetic

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>