Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new plant hormone

12.08.2008
Strigolactones also play a major role outside the plant

Scientists from the Wageningen University Laboratory of Plant Physiology and an international team of scientists have discovered a new group of plant hormones, the so-called strigolactones. This group of chemicals is known to be involved in the interaction between plants and their environment.


Two pea plants: One normal plant and a mutant that cannot produce strigolactones. The second plant is branched. The image also shows parasitic plants growing on the roots of the regular pea plant, while the mutant plant is parasite-free.

The scientists have now proven that strigolactones, as hormones, are also crucial for the branching of plants. The discovery will soon be published in Nature and is of great importance for innovations in agriculture. Examples include the development of cut flowers or tomato plants with more or fewer branches. These crops are of major economic and social importance worldwide.

The growth and development of plants is largely controlled by plant hormones. Plants produce these chemicals themselves, thus controlling the growth and development of roots and stems, for example. A number of plant hormones, such as auxins, giberellins and cytokinins, were discovered by scientists decades ago. Now a new group of hormones has been found: The so-called strigolactones.

Previous research by institutes including Wageningen UR has shown that strigolactones plays a major part in the interaction between plants and their environment. As plants cannot move, they commonly use their own chemicals to control the environment as best as they can.

Strigolactones are of major importance to the interaction between plants and symbiotic fungi, for example. These fungi live in a symbiotic relationship with plants, lthat is mutually beneficial. They transport minerals from the soil to the plant, while the plant gives the fungi sugars ‘in return’.

Unfortunately, the strigolactones have also been “hijacked” by harmful organisms: They help seeds of parasitic plants to germinate when plant roots are in the vicinity. The seedlings of the parasite attach to the root of the plant and use the plant’s nutrients for their own growth and reproduction. Unlike the symbiotic fungi, however, they do not give anything in return. On the contrary, the parasitism often causes the host plant to die, eventually.

The international research team consisting of French, Australian and Dutch scientists, coordinated in France, found mutants of pea that were branching without restraint. It turned out that these pea plants were not capable of producing strigolactones. When the plants were administered strigolactones, the unrestrained branching stopped. The same effect occurred in an entirely different plant, thale cress. The mutant plants also caused a significant lower germination of the parasitic plant seeds and induced less interaction with symbiotic fungi.

The scientists also showed that a specific ‘receptor reaction’ for the strigolactones occurs in plants, a phenomenon that is characteristic for plant hormones. Although some previously discovered plants with unrestrained branching turned out to be producing strigolactones themselves, their receptor connection was disturbed: Strigolactones administered from the outside could not stop the uncontrolled branching.

It has also been shown that the plants are capable of transporting strigolactones internally and that the chemicals work at very low concentrations, two other typical characteristics of plant hormones.

The importance of this discovery of a new group of plant hormones is emphasised by the fact that Nature is publishing an article by a Japanese team in the same issue in which similar results are presented. It is expected that this new knowledge will be applied in agriculture and horticulture, for example in breeding and the development of branching regulators.

Cut flower varieties and potted plants with either more or less branching may have special ornamental value, while crops with more or less branching may be beneficial in cultivation. Tomato plants in which less branching occurs can benefit the greenhouse horticulture, for instance.

Plant breeding and greenhouse horticulture are key agricultural industries in the Netherlands and strongly focussed on innovation.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>