Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new plant hormone

12.08.2008
Strigolactones also play a major role outside the plant

Scientists from the Wageningen University Laboratory of Plant Physiology and an international team of scientists have discovered a new group of plant hormones, the so-called strigolactones. This group of chemicals is known to be involved in the interaction between plants and their environment.


Two pea plants: One normal plant and a mutant that cannot produce strigolactones. The second plant is branched. The image also shows parasitic plants growing on the roots of the regular pea plant, while the mutant plant is parasite-free.

The scientists have now proven that strigolactones, as hormones, are also crucial for the branching of plants. The discovery will soon be published in Nature and is of great importance for innovations in agriculture. Examples include the development of cut flowers or tomato plants with more or fewer branches. These crops are of major economic and social importance worldwide.

The growth and development of plants is largely controlled by plant hormones. Plants produce these chemicals themselves, thus controlling the growth and development of roots and stems, for example. A number of plant hormones, such as auxins, giberellins and cytokinins, were discovered by scientists decades ago. Now a new group of hormones has been found: The so-called strigolactones.

Previous research by institutes including Wageningen UR has shown that strigolactones plays a major part in the interaction between plants and their environment. As plants cannot move, they commonly use their own chemicals to control the environment as best as they can.

Strigolactones are of major importance to the interaction between plants and symbiotic fungi, for example. These fungi live in a symbiotic relationship with plants, lthat is mutually beneficial. They transport minerals from the soil to the plant, while the plant gives the fungi sugars ‘in return’.

Unfortunately, the strigolactones have also been “hijacked” by harmful organisms: They help seeds of parasitic plants to germinate when plant roots are in the vicinity. The seedlings of the parasite attach to the root of the plant and use the plant’s nutrients for their own growth and reproduction. Unlike the symbiotic fungi, however, they do not give anything in return. On the contrary, the parasitism often causes the host plant to die, eventually.

The international research team consisting of French, Australian and Dutch scientists, coordinated in France, found mutants of pea that were branching without restraint. It turned out that these pea plants were not capable of producing strigolactones. When the plants were administered strigolactones, the unrestrained branching stopped. The same effect occurred in an entirely different plant, thale cress. The mutant plants also caused a significant lower germination of the parasitic plant seeds and induced less interaction with symbiotic fungi.

The scientists also showed that a specific ‘receptor reaction’ for the strigolactones occurs in plants, a phenomenon that is characteristic for plant hormones. Although some previously discovered plants with unrestrained branching turned out to be producing strigolactones themselves, their receptor connection was disturbed: Strigolactones administered from the outside could not stop the uncontrolled branching.

It has also been shown that the plants are capable of transporting strigolactones internally and that the chemicals work at very low concentrations, two other typical characteristics of plant hormones.

The importance of this discovery of a new group of plant hormones is emphasised by the fact that Nature is publishing an article by a Japanese team in the same issue in which similar results are presented. It is expected that this new knowledge will be applied in agriculture and horticulture, for example in breeding and the development of branching regulators.

Cut flower varieties and potted plants with either more or less branching may have special ornamental value, while crops with more or less branching may be beneficial in cultivation. Tomato plants in which less branching occurs can benefit the greenhouse horticulture, for instance.

Plant breeding and greenhouse horticulture are key agricultural industries in the Netherlands and strongly focussed on innovation.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>