Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop New Carbon Accounting Method to Reduce Farmers' Use of Nitrogen Fertilizer

19.07.2012
Large amounts of nitrogen fertilizer lead to nitrous oxide, a greenhouse gas, in the atmosphere

It's summer. For many of us, summer is a time synonymous with fresh corn, one of the major field crops produced in the United States.

In 2011, corn was planted on more than 92 million acres in the U.S., helping the nation continue its trend as the world's largest exporter of the crop.

Corn is a nitrogen-loving plant. To achieve desired production levels, most U.S. farmers apply synthetic nitrogen fertilizer to their fields every year.

Once nitrogen fertilizer hits the ground, however, it's hard to contain and is easily lost to groundwater, rivers, oceans and the atmosphere.

"That's not good for the crops, the farmers or the environment," says Phil Robertson, a scientist at Michigan State University and principal investigator at the National Science Foundation's (NSF) Kellogg Biological Station (KBS) Long-Term Ecological Research (LTER) site.

KBS is one of 26 such NSF LTER sites across the United States and around the globe in ecosystems from forests to coral reefs.

Nitrogen lost to the environment from agricultural fields is nitrogen not used by crops, Robertson says. "This costs farmers money and degrades water and air quality, with significant health, biodiversity and downstream economic effects."

Farmers already manage fertilizer to avoid large losses. But, to reduce losses further, it currently costs more money than the fertilizer saves.

Robertson and colleagues are working on a way to help make the time and expense of efforts to mitigate fertilizer loss worthwhile. They're putting the finishing touches on a program that would pay farmers to apply less nitrogen fertilizer in a way that doesn't jeopardize yields. The program, called the nitrous oxide greenhouse gas reduction methodology, is being conducted in partnership with the Electric Power Research Institute.

"This project is a great example of how long-term, fundamental research can contribute practical solutions to important environmental problems of concern in the U.S.--and ultimately around the world," says Matt Kane, an NSF program director for LTER.

In the United States, agriculture accounts for almost 70 percent of all nitrous oxide emissions linked with human activity. Nitrous oxide is one of the major gases contributing to human-induced climate change; it has a lifetime in the atmosphere of more than 100 years. In addition, a molecule of nitrous oxide has more than 300 times the heat-trapping effect in the atmosphere as a molecule of carbon dioxide.

In soils, the production of nitrous oxide through microbial activity is a natural process. By applying large amounts of fertilizer, however, humans have greatly increased the amount of nitrous oxide in soils. This is particularly true when nitrogen fertilizer is added in larger amounts than the crop needs, and when it is applied at times or in ways that make it difficult for the crop to get the full benefit.

"Improving the efficiency of nitrogen use for field crop agriculture holds great promise for helping mitigate climate change," Robertson says.

The nitrous oxide greenhouse gas reduction methodology, which is a way for farmers to participate in existing and emerging carbon markets, recently was approved by the American Carbon Registry and is in its final stages of validation by the Verified Carbon Standard--two carbon market standards that operate worldwide.

When farmers reduce their nitrogen fertilizer use, they can use the methodology as a means of generating carbon credits. These credits can be traded in carbon markets for financial payments.

The scientific underpinning for the methodology rests on decades of research Robertson and colleagues have conducted at the KBS LTER site.

"By closely following nitrous oxide, crop yields and other ecosystem responses to fertilizers," Robertson says, "we discovered that nitrous oxide emissions increase exponentially and consistently with increasing nitrogen fertilizer use."

The idea of the methodology is to offer ways of using less fertilizer to produce crops. But if farmers apply less fertilizer, will their crop production take a hit?

"Carbon credits provide an incentive to apply fertilizer more precisely, not to reduce yields," says Robertson. "If yields were reduced significantly, the climate effect would be nil because a farmer somewhere else would have to use more nitrogen to make up the yield loss, thereby generating more nitrous oxide."

The new methodology developed at NSF's KBS LTER site was successfully used by a Michigan farmer in Tuscola County as part of a proof-of-concept project.

"A major value of the approach is that it is straightforward to understand and implement," says KBS LTER scientist Neville Millar, who co-led development of the methodology.

In addition to providing an economic incentive, the methodology is a tool farmers can apply to enhance their land stewardship.

"The same strategies that farmers can use to minimize nitrous oxide loss will act to reduce the loss of nitrate to groundwater and loss of other forms of nitrogen to the atmosphere," says Millar.

Adam Diamant, technical executive at the Electric Power Research Institute and a co-developer of the methodology, says the new approach resulted in a "quadruple win: for farmers, for industrial organizations that may be required to reduce their greenhouse gas emissions, for the atmosphere and for water quality from the upper Midwest all the way to the Gulf of Mexico."

Adds Robertson: "We're in uncharted territory with a growing global human population and unprecedented environmental change.

"Performing the research that links environmental benefits to environmental markets, without compromising crop yields, is crucial for feeding more people while sustaining Earth's ecosystems."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Related Websites
NSF LTER Network: http://www.lternet.edu
NSF Kellogg Biological Station LTER Site: http://lter.kbs.msu.edu/
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>