Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Battle Herbicide Resistance

10.10.2013
Mississippi State University scientists are leading the charge in the fight against glyphosate-resistant Italian ryegrass with a research-based plan of attack.

Jason Bond, a weed scientist at the MSU Delta Research and Extension Center in Stoneville, said Mississippi was the first state to discover Italian ryegrass that cannot be controlled with glyphosate, a common herbicide originally known as Round-up, in a crop situation. The weed has spread quickly since it arrived.


(Photo by MSU Delta Research and Extension Center/Jason Bond)

Mississippi State University weed scientists are leading the fight against glyphosate-resistant Italian ryegrass, such as this growing in a production corn field in Washington County in early spring 2013.

“We have 32 counties that contain glyphosate-resistant Italian ryegrass,” Bond said. “The state with the next highest amount is Arkansas, and they have eight counties with this problem. We’ve been working on this challenge since 2005, and everyone is looking to Mississippi for recommendations.”

Bond said he and his colleagues with the Mississippi Agricultural and Forestry Experiment Station and the MSU Extension Service are very confident about the effectiveness of the research-based program they developed to control glyphosate-resistant Italian ryegrass. It is based on the use of other types of herbicide applied at specific times.

“Our program requires a minimum of two herbicide applications to even approach complete control,” he said. “Ideally, growers will use fall, winter and spring herbicide applications for total control.”

Bond said growers should make the first herbicide application in fall, from mid-October to mid-November; the second in winter, from mid-January to early February; and the third in spring, around March 1.

“Many of our Delta growers already use post-harvest herbicides in the fall,” he said. “They do a lot of tillage after harvest and don’t want to disturb the fields before they plant, so they put down an herbicide to control winter vegetation. That practice isn’t typical in other states, so some growers hesitate to invest in that application. But to control glyphosate-resistant Italian ryegrass, they need to put down a residual herbicide to control it before it comes up.”

Bond said growers who do not take steps in the fall to control glyphosate-resistant Italian ryegrass find it more difficult to control later. He and his colleagues have tested a variety of factors to develop their approach.

“We’ve sprayed around 50 residual herbicides to test their effectiveness, and we’ve found five or six that are active against glyphosate-resistant Italian ryegrass,” he said. “We haven’t kept track of post-emergence herbicides we’ve tried, but I’d guess easily over 100. Basically, at one time or another, we have sprayed every herbicide with any activity on grass species that is labeled for use in corn, rice, cotton or soybean.”

Once Bond and his colleagues developed their recommendations and collected more data to verify their approach worked, they tackled the research from a yield perspective.

They began with test plots: some were free of ryegrass; some had been treated with two to three herbicide applications; and some were not treated at all and were carpeted with ryegrass.

“We applied different levels of our herbicide program and planted corn, cotton or soybeans,” he said.

Then they monitored the yields from each test plot to see how the invasive weed impacted production.

In 2012, MSU researchers found corn was the most susceptible to yield reduction because of uncontrolled glyphosate-resistant Italian ryegrass.

“When we controlled glyphosate-resistant Italian ryegrass in corn, the benefit-to-cost ratio was 13:1,” he said. “For every dollar spent to control glyphosate-resistant Italian ryegrass, we received a $13 return in corn yield. Even if that was only 2:1, the inputs still paid for themselves.”

Unfortunately for growers, Italian ryegrass is not the only glyphosate-resistant weed they have to manage.

Mississippi has the dubious honor of having more documented glyphosate-resistant weed species than any other state. While new control technologies are on the horizon, for now, growers must battle some type of weed year-round.

Darrin Dodds, cotton specialist with the Mississippi State University Extension Service, said each year more weeds are identified as resistant to herbicides.

“Mississippi has had documented resistance to herbicides as far back as 1989, when common cocklebur was identified as being resistant to a certain class of herbicides,” Dodds said. “But beginning in 2003, the number of weeds resistant to glyphosate began steadily increasing: horseweed in 2003; Italian ryegrass in 2005; Palmer amaranth in 2009; johnsongrass, common waterhemp, and giant ragweed in 2010; and goosegrass and spiny amaranth in 2012.

“Mississippi row crop producers need to be as adaptable as the weeds they fight, because herbicide-resistant weeds are here to stay,” he said.

For herbicide program information, visit http:///msucares.com and click on “Insects-Plant Diseases-Pesticides-Weeds” or download Publication 1532, “2013 Weed Control Guidelines for Mississippi.” Information can also be found at the Mississippi Crop Situation Blog, http://www.mississippi-crops.com.

Keri Collins Lewis | Newswise
Further information:
http://www.mississippi-crops.com

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>