Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt-tolerant bacteria improve crop yields

07.10.2013
Uzbek Microbiologist Egamberdieva receives TWAS Prize for her results in agricultural science

Uzbek microbiologist Dilfuza Egamberdieva, group leader at the National University of Uzbekistan, at Tashkent, has isolated salt-tolerant bacterial strains that live in salt-degraded soils, where they help the rooting process in plants.

After the selection of potentially root-colonizing bacteria, she has tested them in experimental settings on plants’ roots, obtaining 10-15% yields increase. She hopes to apply her technique soon, in Uzbekistan, to boost the yield of economically important varieties such as wheat, cotton, tomato and cucumber.

Egamberdieva has been invited to present her results at the TWAS’s 24th General Meeting in Buenos Aires, where she has been awarded one of the TWAS Prizes that carries a cash award of US$15,000.

TWAS, The World Academy of Sciences for the advancement of science in developing countries, headquartered in Trieste, Italy, was founded by Pakistani physicist Abdus Salam. This year the Academy celebrates its 30th anniversary at its conference in Buenos Aires.

More than 2.6 billion people in the world rely on agriculture, but around 52% of the land used for this scope shows soil degradation. Land impoverishment is often due to salt infiltrations in the ground, which weaken the plants and lower the yield. Salt inhibits “nodulation”, the development of tiny nodules on plants’ roots, where nitrogen fixation occurs. Nitrogen is a critical element limiting plant growth, and specific bacteria convert the atmospheric nitrogen absorbed by plants into a more usable form (ammonia).

Uzbekistan has 4,4 million hectares to use for agricultural purposes, but more than half are under-productive, due to excessive saline content from the Aral Sea basin.

Egamberdieva has been studying soil bacterial communities for more than 10 years. She has noticed that salty soils discourage bacterial growth, and stress plants at the same time. In addition, as she has repeatedly proven, salty soils often host bacteria that are noxious for humans.

In her investigation, Egamberdieva has spotted beneficial soil salt-resistant bacteria that help plants grow better, causing no harm to men. These bacteria are found around the roots of plants. “We found that bacteria from the Pseudomonas family, in particular Pseudomonas extremorientalis, are salt-resistant and grow close to the roots, where they compete with other bacteria for colonization. On the contrary, pathogenic bacteria cannot actively colonize the plants’ roots. Here, Pseudomonas produce antibiotics that plants use to defend themselves against fungi, trigger the rooting process and produce nodulation-promoting factors, thus giving the vegetation better chances to fix nitrogen and grow bigger”. As an exchange for these favours, plants secrete exudates useful for the bacteria.

To better exploit these useful bacterial strains, the Uzbek microbiologist has come up with a technique that allows the selective enrichment of Pseudomonas strains. Using her technique, which has already been patented, Egamberdieva is able to isolate from the soil only beneficial root-stimulating bacteria.

“We have already completed some experiments, both in protected greenhouses and in open fields, working in close contact with local farmers”, said Egamberdieva, who is also engaged in promotion campaigns with the government and in outreach campaigns among farmers. “Crops treated with the “bacterial fertilizers” give yields 12-15 % higher than normal, when bacteria are administered to tomatoes and cucumber”. Soon, Egamberdieva hopes, she will be given the green light to test her findings on real fields, thus helping farmers achieve better products. Her research has been supported mostly by international organizations and funding agencies.

For additional information, contact:

Public Information Office TWAS
Ed Lempinen || elempinen@twas.org || mobile Argentina: +39 348 920 1915
Cristina Serra || cserra@twas.org || mobile Argentina: +39 366 657 1764
CONICET
Prensa@conicet.gov.ar, +54 11 5983 1396/1216
Meeting information
TWAS 24th General Meeting

Peter McGrath | Research asia research news
Further information:
http://www.twas.org
http://www.researchsea.com

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>