Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Salt-tolerant bacteria improve crop yields

Uzbek Microbiologist Egamberdieva receives TWAS Prize for her results in agricultural science

Uzbek microbiologist Dilfuza Egamberdieva, group leader at the National University of Uzbekistan, at Tashkent, has isolated salt-tolerant bacterial strains that live in salt-degraded soils, where they help the rooting process in plants.

After the selection of potentially root-colonizing bacteria, she has tested them in experimental settings on plants’ roots, obtaining 10-15% yields increase. She hopes to apply her technique soon, in Uzbekistan, to boost the yield of economically important varieties such as wheat, cotton, tomato and cucumber.

Egamberdieva has been invited to present her results at the TWAS’s 24th General Meeting in Buenos Aires, where she has been awarded one of the TWAS Prizes that carries a cash award of US$15,000.

TWAS, The World Academy of Sciences for the advancement of science in developing countries, headquartered in Trieste, Italy, was founded by Pakistani physicist Abdus Salam. This year the Academy celebrates its 30th anniversary at its conference in Buenos Aires.

More than 2.6 billion people in the world rely on agriculture, but around 52% of the land used for this scope shows soil degradation. Land impoverishment is often due to salt infiltrations in the ground, which weaken the plants and lower the yield. Salt inhibits “nodulation”, the development of tiny nodules on plants’ roots, where nitrogen fixation occurs. Nitrogen is a critical element limiting plant growth, and specific bacteria convert the atmospheric nitrogen absorbed by plants into a more usable form (ammonia).

Uzbekistan has 4,4 million hectares to use for agricultural purposes, but more than half are under-productive, due to excessive saline content from the Aral Sea basin.

Egamberdieva has been studying soil bacterial communities for more than 10 years. She has noticed that salty soils discourage bacterial growth, and stress plants at the same time. In addition, as she has repeatedly proven, salty soils often host bacteria that are noxious for humans.

In her investigation, Egamberdieva has spotted beneficial soil salt-resistant bacteria that help plants grow better, causing no harm to men. These bacteria are found around the roots of plants. “We found that bacteria from the Pseudomonas family, in particular Pseudomonas extremorientalis, are salt-resistant and grow close to the roots, where they compete with other bacteria for colonization. On the contrary, pathogenic bacteria cannot actively colonize the plants’ roots. Here, Pseudomonas produce antibiotics that plants use to defend themselves against fungi, trigger the rooting process and produce nodulation-promoting factors, thus giving the vegetation better chances to fix nitrogen and grow bigger”. As an exchange for these favours, plants secrete exudates useful for the bacteria.

To better exploit these useful bacterial strains, the Uzbek microbiologist has come up with a technique that allows the selective enrichment of Pseudomonas strains. Using her technique, which has already been patented, Egamberdieva is able to isolate from the soil only beneficial root-stimulating bacteria.

“We have already completed some experiments, both in protected greenhouses and in open fields, working in close contact with local farmers”, said Egamberdieva, who is also engaged in promotion campaigns with the government and in outreach campaigns among farmers. “Crops treated with the “bacterial fertilizers” give yields 12-15 % higher than normal, when bacteria are administered to tomatoes and cucumber”. Soon, Egamberdieva hopes, she will be given the green light to test her findings on real fields, thus helping farmers achieve better products. Her research has been supported mostly by international organizations and funding agencies.

For additional information, contact:

Public Information Office TWAS
Ed Lempinen || || mobile Argentina: +39 348 920 1915
Cristina Serra || || mobile Argentina: +39 366 657 1764
CONICET, +54 11 5983 1396/1216
Meeting information
TWAS 24th General Meeting

Peter McGrath | Research asia research news
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>