Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salivating over wheat plants may net Hessian flies big meal or death

15.06.2011
The interaction between a Hessian fly's saliva and the wheat plant it is attacking may be the key to whether the pest eats like a king or dies like a starving pauper, according to a study done at Purdue University.

"The insect induces or suppresses susceptibility in the plant," said Christie Williams, a research scientist with the U.S. Department of Agriculture's Agricultural Research Service and a Purdue associate professor of entomology. "It's not that the fly larva is making holes and retrieving nutrients as once thought. The larva is doing something chemically to change the plant."


A Hessian fly-infested susceptible wheat seedling before (top) and after (bottom) staining with red dye. The larvae induce the host plant cells to increase in permeability, as visualized by their ability to absorb the red stain. This increased permeability allows plant nutrients to leak to the surface where they are consumed by the larvae. Credit: Photo by Jill Nemacheck

Williams and a team of entomologists found that Hessian flies, which cause millions of dollars in damage to U.S. wheat crops each year, trigger one of two responses in plants: the plants either put up strong defenses to essentially starve the fly or succumb, releasing essential nutrients to the fly. Their findings were published in the early online release of the Journal of Experimental Botany.

"At about the first day of attack, when susceptible plants become permeable, they start to secrete nutrients that the larvae consume," said Jill Nemacheck, a USDA/ARS biological sciences technician at Purdue and paper co-author. "In resistant plants, that permeability goes away because the plant does its job quickly and releases proteins that make the larva not want to feed."

The researchers applied a red dye to the plant's surface and observed how far it spread throughout plant tissues. In plants that mounted defenses, the dye spread minimally and tissue repaired itself within a few days. In plants that were susceptible, the dye spread throughout the plant before it died.

"It's a simple way to visually observe how the tissue is affected," said Kurt Saltzmann, a Purdue research assistant professor of molecular entomology and co-author of the paper. "It's one of those things you can see immediately."

Researchers saw signs that resistant plants were producing more lipase, a protein that degrades lipids, or fats, in the cell surface. It is believed that lipase acts as a defense by providing the small surface holes that deliver toxic proteins to deter larvae from feeding.

In an unexpected twist, however, the researchers found cases in which avirulent fly larvae, which should trigger defense mechanisms from the plants that lead to the larvae deaths, could survive in some cases. A virulent larva that attacks a resistant plant that has already initiated defense mechanisms can reverse those defenses. In that case, both the virulent and avirulent flies would be able to feed on the plant.

"By having this rescue happen, it keeps some avirulent flies in the population," Williams said. "This may be an advantage to the plant to some degree. It probably extends the durability of resistance."

The next step in the research is to determine which genes are responsible for turning on wheat defenses and how those could be activated to respond to virulent flies.

"We need to better understand the mechanisms that occur when a virulent larva infests a host plant in order to build better defenses for those plants," said Subhashree Subramanyam, a research associate in agronomy and paper co-author.

The U.S. Department of Agriculture-Agricultural Research Service funded the research.

A publication-quality photo is available at http://www.purdue.edu/uns/images/2011/williams-hessian.jpg

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110614WilliamsPermeablili.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>