Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe seed: Researchers yielding good results on food cotton in field

08.09.2009
Field trials of a new cotton are verifying previous lab and greenhouse studies indicating the crop could become a source of protein for millions of malnourished people in the world.

The cotton was engineered so that the toxic gossypol is reduced to tolerable levels in the high-protein seed but remain at higher levels in the rest of the plant to ward off pests and disease.

"The results look very promising." said Dr. Keerti Rathore, the Texas AgriLife Research plant biotechnologist in whose lab the cotton was developed.

Gossypol has long been a block for cotton farmers trying to make cotton seed available for human or animal consumption. Cotton fibers have been spun into fabric for more than 7,000 years, but generally only cattle have been able to eat the fuzzy seeds that are separated from the fiber. Cattle can tolerate the gossypol because it is gradually digested through their unique four-part stomach.

But less than three years ago, Rathore's paper in the Proceedings of the National Academy of Sciences announced that cotton plants had been successfully altered in the lab to "silence" gossypol in the seed.

Five generations of cotton plants produced in greenhouses and the small test plot in the field this year are showing similar findings, Rathore said, though the results have not yet been published in scholarly journals.

"We have analyzed the plant leaves, flower organs and seeds," Rathore said of the first plant grown under normal farm conditions. "The levels of gossypol and related defense chemicals are similar to that of regular cotton plants in the buds, leaves and flowers. But the seed is still showing the ultra-low levels of gossypol."

Rathore and his team used a scientific method called RNAi, a process also being used to explore cancer and HIV cures. This technology, discovered by Nobel laureates Andrew Z. Fire and Craig C. Mello, can silence specific genes. That enabled the team to target the gossypol gene in the cottonseed but let the gene express itself in the rest of the plant.

The "beauty of this project," Rathore said, is that the high-protein seed could be a new food source - especially in developing countries.

As reported in his original paper, the cottonseed from these plants meet World Health Organization and U.S. Food and Drug Administration standards for food consumption, potentially making a new, high-protein food available to 500 million people a year.

Rathore noted that for every pound of cotton fiber, the plant produces about 1.6 pounds of seed. The annual world cottonseed production equals about 44 million metric tons, and studies have shown the seed to be about 22 percent protein.

He said kernels from the safe seed could be ground into a flour-like powder and used as a protein additive in food preparations or perhaps roasted and seasoned as a nutritious snack.

Cotton Inc., which helps fund the research, is enthusiastic about the results.

"The entire cotton industry has a vested interest in expanding the uses of the cotton plant," said J. Berrye Worsham, Cotton Inc. president and CEO. "The success Dr. Rathore and his team have had with the field trial gets us one step closer to cotton being viewed as a fiber and a food source for future generations."

Previous attempts to breed cotton varieties without gossypol were not commercially successful because the toxin was removed from the seed as well as the rest of the plant. That left the plants vulnerable to insects and disease – a risk and a cost that farmers weren't willing to accept.

A way to extract gossypol out of the oil was developed years ago, Rathore noted, but at a cost. Plus, the meal left after the oil was extracted still contained the toxin so could not be consumed by humans, or as feed for pigs, chickens or turkeys.

Rathore plans to continue field trial studies to assure the stability of the gossypol-free cotton variety, and he has additional lines that he expects have even lower levels of the substance. But, he adds, the greatest obstacle for seeing the variety grown in fields and ultimately feeding the world's hungry may be legalities.

Because the variety is "genetically modified," the scientist and AgriLife Research will have to negotiate with others who hold patent rights to some of the basic technologies used to develop this "ultra-low seed-gossypol" cotton. He will also have to seek approval through the U.S. Department of Agriculture, U.S. Food and Drug Administration and perhaps other agencies to make it commercially available as seed to farmers. That process could take years, he said.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>