Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian Boreal Forests Undergoing Vegetation Change

29.03.2011
Russia's boreal forest – the largest continuous expanse of forest in the world, found in the country's cold northern regions – is undergoing an accelerating large-scale shift in vegetation types as a result of globally and regionally warming climate. That in turn is creating an even warmer climate in the region, according to a new study published in the journal Global Change Biology and highlighted in the April issue of Nature Climate Change.
The Great Russian forest, which includes much of Siberia, is the size of the contiguous United States. It has experienced significant documented warming over the last several decades. As a result, tree species that are more tolerant of warmer weather are advancing northward at an increasing rate as species that are less tolerant to a warmer climate are declining in number.

"We've identified that the boreal forest, particularly in Siberia, is converting from predominantly needle-shedding larch trees to evergreen conifers in response to warming climate," said the study's lead author, Jacquelyn Shuman, a post-doctoral research associate in environmental sciences in U.Va.'s Graduate School of Arts & Sciences. "This will promote additional warming and vegetation change, particularly in areas with low species diversity."

Larch trees drop their needles in the fall, allowing the vast snow-covered ground surface of winter to reflect sunlight and heat back into space. This helps keep the climate in the region very cold. But evergreen conifers, such as spruce and fur, retain their needles year round. These trees absorb sunlight, which causes ground-level heat retention. This creates ideal conditions for the proliferation of evergreens, to the detriment of the leaf-dropping larches. The result is a northward progression of evergreens and a farther-northward retreat by the larch forests.

"What we're seeing is a system kicking into overdrive," said co-author Hank Shugart, a U.Va. professor of environmental sciences. "Warming creates more warming."

The researchers used a climate model to assess what would happen if evergreens continued to expand their range farther north and larch species declined. The "positive feedback" cycle of warming promoting warming showed an increase of absorbed surface warming. The model takes into account detailed information about tree growth rates, and the results agree with actual field studies documenting changes in cone production and movement of evergreen treelines northward.

"Such changes in that vast region have the potential to affect areas outside of the region," Shuman noted.

The Russian boreal forest sits over a tremendous repository of carbon-rich soil frozen in the permafrost. As the forest changes in species distribution from larch to evergreens, warming of the ground surface would cause decomposition of the soil, releasing huge quantities of carbon dioxide into the atmosphere – possibly as much as 15 percent of the carbon dioxide currently in the atmosphere.
"This is not the scenario one would want to see," Shugart said. "It potentially would increase warming on a global scale."

The study is derived from Shuman's Ph.D. dissertation. Shugart served as her adviser. Their paper is co-authored by Thomas Liam O'Halloran, previously a doctoral student in environmental sciences at U.Va. and now a post-doctoral research associate at Oregon State University.

Shuman and Shugart recently received a $987,000, three-year grant from NASA to continue their studies.

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu
http://www.virginia.edu/uvatoday/newsRelease.php?id=14554

Further reports about: SIBERIA Vegetation boreal forest carbon dioxide environmental science forests

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>