Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russia has potential to become the world’s leading wheat export nation

27.11.2014

IAMO scholars present their latest research findings

In the coming decades, the global demand for agricultural products will rise substantially. Russia has ample scope for increasing agricultural production because more than 40 million hectares of former cropland have been abandoned since the dissolution of the Soviet Union, and because grain yields remain much lower than the yields achieved elsewhere in conditions that are naturally comparable.


Set-aside land in Russia, Photo: Alexander Prishchepov

A new paper shows that Russia can substantially increase its wheat production and become the leading international exporter under conservative assumptions of yield increases and modest re-cultivation of its unused land resources.

Schierhorn, together with colleagues at the Leibniz Institute of Agricultural Development in Transition Economies (IAMO) and the University of Alberta, Canada, calibrated a crop growth model to simulate potential wheat yields for 28 key wheat growing areas in Russia between 1995 and 2006.

Optimizing fertilizer supply can raise average wheat yields by 1.2 to 3.0 t/ha, and combined with irrigation the yields could increase by as much as 1.8 to 4.6 t/ha. These results were recently published in the journal Environmental Research Letters.

Based on yield simulations and maps of abandoned cropland, the research team quantified the potential for Russia to increase its wheat production based on productivity increases and land expansion.

In the journal Global Food Security, the authors show that higher land productivity is the key for enlarging wheat production, whereas re-cultivation of the abandoned croplands will only generate minor production increases, when carbon costs resulting from re-cultivation are accounted for.

The researchers demonstrate that, under conservative scenarios of yield gap closure and the re-cultivation of the recently abandoned croplands, Russia could increase its wheat production by up to 32 million tons, or 62% above production in 2013, and become the world’s leading wheat exporter (for comparison, Germany harvested a total of 25 million tons of wheat in 2013). However, substantial investments in infrastructure, education and research as well as institutional and political reform are vital for attaining these production increases.

Further information

Schierhorn, F., Faramarzi, M., Prishchepov, A., Koch, F., Müller, D. (2014): Quantifying yield gaps in wheat production in Russia, Environmental Research Letters, Vol. 9, No. 8. (open access). http://iopscience.iop.org/1748-9326/9/8/084017

Schierhorn, F., Müller, D., Prishchepov, A., Faramarzi, M., Balmann, A. (in press): The potential of Russia to increase its wheat production through cropland expansion and intensification, Global Food Security (open access). http://www.sciencedirect.com/science/article/pii/S2211912414000479 

Photo downloads at: www.iamo.de/fileadmin/Presse/Pressefoto_Brachflaechen_in_Russland_Foto_Alexander_Prishchepov.JPG

About IAMO

The Leibniz Institute of Agricultural Development in Transition Economies (IAMO) analyzes economic, social and political processes of change in the agricultural and food sector, and in rural areas. The geographic focus covers the enlarging EU, transition regions of Central, Eastern and South Eastern Europe, as well as Central and Eastern Asia. IAMO works to enhance the understanding of institutional, structural and technological changes. Moreover, IAMO studies the resulting impacts on the agricultural and food sector as well as the living conditions of rural populations. The outcomes of our work are used to derive and analyze strategies and options for enterprises, agricultural markets and politics. Since its founding in 1994, IAMO has been part of the Leibniz Association, a German community of independent research institutes.

Academic contact

Florian Schierhorn
Department Structural Development of Farms and Rural Areas
Tel.: +49 345 2928-335
Fax: +49 345 2928-399
schierhorn@iamo.de

Media contact

Daniela Schimming
Public Relations
Tel.: +49 345 2928-330
Fax: +49 345 2928-499
presse@iamo.de
www.iamo.de  

Daniela Schimming | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>