Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Roadrunners not too fast for AgriLife researcher

04.08.2009
Radio telemetry used to track movement, habitat

Wile E. Coyote might not have been able to catch up with the roadrunner on the Saturday morning cartoons, but one Texas AgriLife Research scientist has had no problems.

Dr. Dean Ransom, AgriLife Research wildlife ecologist in Vernon, has conducted a study of the roadrunner's ecology and habitat for the past four years. Using radio telemetry and studying more than 50 nests, he and his staff have researched home range, habitat use, nesting ecology and dispersal of young since 2006.

The roadrunner is fairly common across the southwestern U.S., but very little is known about the bird, Ransom said. As their name suggests, roadrunners spend most of their time walking and running along the ground, but are capable of flight when pressured.

"It's not graceful, but it works," he said.

Roadrunner behavior is somewhat unique, Ransom said. They are monogamous and likely mate for life. Also, the male helps in all facets of nesting and feeding the young, including incubating the eggs at night.

Nesting activity begins in early April, he said. The nest typically is located in a tree or shrub, about 3-5 feet high, and usually in dense brush not far from an edge, such as a fence line or ranch road.

Such nest placement allows ease of movement to and from the nest, quick escape from predators and open areas to hunt and forage for lizards and snakes that bask in the bare dirt, Ransom said.

Most nests are well hidden and difficult to find, he said. They are generally in the crook of a large single-trunk tree, using the main branch of the trunk for stability.

The nest is a flat-platformed shallow bowl with the outer rim lined with fairly large twigs and resembles a large mockingbird nest.

Roadrunners lay about four eggs on average per nest, but the clutch size can range as high as 10, Ransom said. In the larger clutches, many of the young don't survive and older nestlings have been documented eating their younger siblings.

"We used nest cameras to document what the parents were feeding their young," he said. "The diet is based solidly on reptiles, especially Texas horned lizards. We have also seen mice, snakes, grasshoppers and a tarantula, and importantly, no birds, particularly bobwhite quail."

Some landowners have expressed concern that roadrunners prey on bobwhite quail, but Ransom said, "I seriously doubt roadrunners prey on very many quail; ecologically, quail are not efficient prey for a generalist and opportunistic predator like roadrunners.

"But we will continue watching and recording, just to be thorough," he said. "Likely, that is a case where perception becomes reality, and the perception is based on a lack of understanding."

Incubation begins with the first egg laid, which results in an asynchronous hatch with chicks of various sizes in the same nest, he said. Incubation takes about 20 days, and the young stay in the nest about 20 days.

After several months on their own, the young usually disperse to establish their own home range, Ransom said. "Dispersal distances are large. We have documented them traveling as much as 6 miles away from their natal home range."

After the young have left the nest and are on their own, both parents become more independent of one another, especially in the winter, Ransom said.

"I believe, however, that both members of a mated pair stay in contact with one another throughout the year through their vocalizations," he said. "In so doing, it facilitates an efficient renewing of the pair bond in the spring."

The home range of roadrunners can be quite large for a bird of its size, Ransom said. On average, male and female range sizes are about 200 acres and tend to be located near sizeable tracts of woody cover. Range sizes shrink by 50 percent to 60 percent during the winter.

A little harder to measure is the size of a roadrunner's territory, he said. Smaller than the home range, a territory is actively defended against intruders, including other roadrunners.

"We witnessed a five-bird brawl that lasted about 90 minutes in 2006…ultimately the resident pair was triumphant," Ransom said.

The aggressive behavior toward intruding birds indicates they are defending territories for some reason – usually an important limiting resource such as food or nest site – but he said they are not sure yet what the basis of that territory is. "I doubt that its food related, but we will pursue that aspect in the next phase of our study."

"One of the more complex questions we're interested in is vegetation structure and fragmentation effects on survival and reproduction, especially the cascading effects on vegetation structure resulting from brush-control practices," Ransom said. "Landscape effects and fragmentation are a major theme in ecology right now, and rightly so."

Land use affects wildlife behavior through its impact on vegetation structure, he said, adding, "We do know that brush control will cause them to abandon their home ranges and move elsewhere."

Ransom said he will continue to research roadrunner behavior and habitat.

"Now that we have laid the foundation of basic research, we can begin to formulate larger more in-depth questions involving multiple study sites in different environments," he said.

Dr. Dean Ransom | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>