Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of beetle outbreaks rise, along with temperature, in the warming West

09.09.2010
The potential for outbreaks of spruce and mountain pine beetles in western North America's forests is likely to increase significantly in the coming decades, according to a study conducted by USDA Forest Service researchers and their colleagues. Their findings, published in the September issue of the journal BioScience, represent the first comprehensive synthesis of the effects of climate change on bark beetles.

"Native bark beetles are responsible for the death of billions of coniferous trees across millions of acres of forests ranging from Mexico to Alaska," said Barbara Bentz, research entomologist with the Forest Service's Rocky Mountain Research Station and lead author of the study. "Our study begins to explain how their populations respond to the climatic changes being projected by the Intergovernmental Panel on Climate Change."

In the study, Bentz and her colleagues synthesized what is currently known about the effects of climate change on several species of bark beetles that cause extensive, landscape-scale tree mortality in North America. They then used a combination of models to analyze the likely response of and generate case studies for two specific species—the spruce beetle and mountain pine beetle.

"Our models suggest that climatic changes on the order of what is expected would increase the population success of both spruce beetle and mountain pine beetle throughout much of their range, although there is considerable variability," said Chris Fettig, a research entomologist with the Pacific Southwest Research Station and a coauthor of the study. "Bark beetles are influenced directly by shifts in temperature, which affect developmental timing and temperature-induced mortality, and indirectly, through climatic effects on the species associated with beetles and their host trees."

One effect the study detected is the likelihood, in a warming climate, of a substantial increase in areas of spruce forest dominated by spruce beetles that reproduce annually rather than every two years, as is common today. Annual reproduction of the beetle can contribute significantly to population growth and the occurrence of outbreaks.

In addition, the study's models also helped to address concerns about the potential for mountain pine beetles to expand their range across forests of central Canada into the central and Eastern United States. The researchers found that, without adaptation to warming temperatures, the likelihood of this occurring is low to moderate throughout this century.

"Understanding how bark beetle populations will be affected under different climate scenarios in different regions is key to developing appropriate management strategies in North American forests," Bentz said.

To read the study's abstract online, visit http://caliber.ucpress.net/doi/abs/10.1525/bio.2010.60.8.6.

The study was a partnership among the Forest Service's three western research stations; the Western Wildland Environmental Threat Assessment Center; the Canadian Forest Service; and the University of Idaho, Moscow.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>