Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Risk of beetle outbreaks rise, along with temperature, in the warming West

09.09.2010
The potential for outbreaks of spruce and mountain pine beetles in western North America's forests is likely to increase significantly in the coming decades, according to a study conducted by USDA Forest Service researchers and their colleagues. Their findings, published in the September issue of the journal BioScience, represent the first comprehensive synthesis of the effects of climate change on bark beetles.

"Native bark beetles are responsible for the death of billions of coniferous trees across millions of acres of forests ranging from Mexico to Alaska," said Barbara Bentz, research entomologist with the Forest Service's Rocky Mountain Research Station and lead author of the study. "Our study begins to explain how their populations respond to the climatic changes being projected by the Intergovernmental Panel on Climate Change."

In the study, Bentz and her colleagues synthesized what is currently known about the effects of climate change on several species of bark beetles that cause extensive, landscape-scale tree mortality in North America. They then used a combination of models to analyze the likely response of and generate case studies for two specific species—the spruce beetle and mountain pine beetle.

"Our models suggest that climatic changes on the order of what is expected would increase the population success of both spruce beetle and mountain pine beetle throughout much of their range, although there is considerable variability," said Chris Fettig, a research entomologist with the Pacific Southwest Research Station and a coauthor of the study. "Bark beetles are influenced directly by shifts in temperature, which affect developmental timing and temperature-induced mortality, and indirectly, through climatic effects on the species associated with beetles and their host trees."

One effect the study detected is the likelihood, in a warming climate, of a substantial increase in areas of spruce forest dominated by spruce beetles that reproduce annually rather than every two years, as is common today. Annual reproduction of the beetle can contribute significantly to population growth and the occurrence of outbreaks.

In addition, the study's models also helped to address concerns about the potential for mountain pine beetles to expand their range across forests of central Canada into the central and Eastern United States. The researchers found that, without adaptation to warming temperatures, the likelihood of this occurring is low to moderate throughout this century.

"Understanding how bark beetle populations will be affected under different climate scenarios in different regions is key to developing appropriate management strategies in North American forests," Bentz said.

To read the study's abstract online, visit http://caliber.ucpress.net/doi/abs/10.1525/bio.2010.60.8.6.

The study was a partnership among the Forest Service's three western research stations; the Western Wildland Environmental Threat Assessment Center; the Canadian Forest Service; and the University of Idaho, Moscow.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>