Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice hulls a sustainable drainage option for greenhouse growers

26.10.2010
Greenhouse plant growers can substitute rice hulls for perlite in their media without the need for an increase in growth regulators, according to a Purdue University study.

Growing media for ornamental plants often consists of a soilless mix of peat and perlite, a processed mineral used to increase drainage. Growers also regularly use plant-growth regulators to ensure consistent and desired plant characteristics such as height to meet market demands.

Organic substitutes for perlite like tree bark have proven difficult because they absorb the plant-growth regulators and keep them from getting to the plants. Using bark requires a 25 percent increase in the volume of growth regulators applied.

"We were not sure whether rice hulls, as an organic component, would hold up the growth regulator," said Roberto Lopez, a Purdue assistant professor of horticulture and co-author of a HortTechnology paper that outlined the findings. "Testing showed that there were no differences in plants grown with rice hulls or perlite."

Pansies and calibrachoa were planted in an 80-20 mix of both peat and perlite and peat and rice hulls and then treated with several different growth regulators. The plants treated with and without growth regulators and grown in peat and perlite and peat and rice hulls had similar heights and stem lengths.

Finding a waste product to replace perlite could reduce the price of growing media since perlite must be mined and heat processed.

"It's a really energy-intensive process and, because it's a mineral, it's non-renewable," said Chris Currey, a horticulture graduate student and co-author of the HortTechnology paper.

Rice hulls are an attractive option, Lopez said, because they can be easily transported on barges and rice growers in the South could increase profits by selling a traditional waste product.

"Often these rice hulls were being burnt because there's not a lot of other use for them," Lopez said.

Syngenta and Fine Americas funded the research. Lopez and Currey collaborated with Purdue research technician Diane Camberato and graduate student Ariana Torres.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Roberto Lopez, 765-496-3425, rglopez@purdue.edu

Chris Currey, 765-496-3425, ccurrey@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>