Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice hulls a sustainable drainage option for greenhouse growers

26.10.2010
Greenhouse plant growers can substitute rice hulls for perlite in their media without the need for an increase in growth regulators, according to a Purdue University study.

Growing media for ornamental plants often consists of a soilless mix of peat and perlite, a processed mineral used to increase drainage. Growers also regularly use plant-growth regulators to ensure consistent and desired plant characteristics such as height to meet market demands.

Organic substitutes for perlite like tree bark have proven difficult because they absorb the plant-growth regulators and keep them from getting to the plants. Using bark requires a 25 percent increase in the volume of growth regulators applied.

"We were not sure whether rice hulls, as an organic component, would hold up the growth regulator," said Roberto Lopez, a Purdue assistant professor of horticulture and co-author of a HortTechnology paper that outlined the findings. "Testing showed that there were no differences in plants grown with rice hulls or perlite."

Pansies and calibrachoa were planted in an 80-20 mix of both peat and perlite and peat and rice hulls and then treated with several different growth regulators. The plants treated with and without growth regulators and grown in peat and perlite and peat and rice hulls had similar heights and stem lengths.

Finding a waste product to replace perlite could reduce the price of growing media since perlite must be mined and heat processed.

"It's a really energy-intensive process and, because it's a mineral, it's non-renewable," said Chris Currey, a horticulture graduate student and co-author of the HortTechnology paper.

Rice hulls are an attractive option, Lopez said, because they can be easily transported on barges and rice growers in the South could increase profits by selling a traditional waste product.

"Often these rice hulls were being burnt because there's not a lot of other use for them," Lopez said.

Syngenta and Fine Americas funded the research. Lopez and Currey collaborated with Purdue research technician Diane Camberato and graduate student Ariana Torres.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Roberto Lopez, 765-496-3425, rglopez@purdue.edu

Chris Currey, 765-496-3425, ccurrey@purdue.edu

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>