Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice blast research reveals details on how a fungus invades plants

19.06.2013
Results move research a step closer to controlling devastating crop diseases

Like a stealthy enemy, blast disease invades rice crops around the world, killing plants and cutting production of one of the most important global food sources.

Now a study by an international team of researchers has shed light on how the rice blast fungus, Magnaporthe oryzae, invades plant tissue. The finding is a step towards learning how to control the disease, which by some estimates destroys enough rice to feed 60 million people annually.

The team, from the Halpin Laboratory at the University of Exeter, in collaboration with Kansas State University and the Iwate Biotechnology Research Center in Japan, found that the fungus has evolved two distinct secretion systems that facilitate its invasion into rice plants. The results of the study are published in the journal Nature Communications.

Professor Nick Talbot from Biosciences at the University of Exeter said: "This discovery shows that there are two ways in which a disease-causing fungus can secrete proteins into plants. This is a big step forward for plant pathology and might eventually offer new strategies to control crop diseases important in food security. The project was a truly international collaboration with observations being painstakingly checked and validated by students working in different continents over the last two years."

Barbara Valent, Distinguished Professor of Plant Pathology at Kansas State University said: "Knowing that a special secretion system is required for disease is significant, because it means we can block this system without harming other fungi that are critical for healthy ecosystems.

Researchers know that to cause plant diseases, pathogenic micro-organisms secrete proteins, called effector proteins, into the host plant's tissue, the proteins suppress the plant's immunity and support the pathogen's growth. The goal of the study was to learn if fungi need different secretory systems to aid their invasion into host plants."

Rice blast has been known throughout recorded history and occurs in all countries where rice is grown, including the U.S. In 1985, wheat blast emerged as a new disease sharply reducing wheat yields in Brazil. So far, wheat blast has only spread within South America and has not been detected in the U.S. Valent is now leading a team of scientists focused on developing resources for rapid identification and elimination of the disease if it should arrive in U.S. wheat regions.

Two of the authors on the paper, Yasin Dagdas and Yogesh Gupta, are prestigious Halpin Scholars at the University of Exeter. The Halpin PhD studentship programme, funded by Dr Les and Mrs Claire Halpin, who are alumni of the University of Exeter, trains the next generation of molecular plant pathologists from developing countries in order to build local expertise that can be use to combat rice blast disease and serious agricultural threats to food security. A third student from Exeter, Tom Mentlak, was funded by a prestigious Sainsbury Plant Science Studentship and now works with Cambridge Consultants.

Speaking about their key contributions to the study, Prof. Talbot said: "This work was led at Exeter by three extremely talented students who forged close links with laboratories in the USA and Japan. They worked exceptionally hard and are a great credit to the University."

Rice blast disease is a threat to global food security and is closely related to wheat blast, a newly emerging disease that threatens wheat production in Brazil and which is spreading across South America. Because rice and wheat are the most important food staples worldwide, learning about these diseases is incredibly important to ensuring global food security.

The researchers found that the rice blast fungus Magnaporthe oryzae has evolved a novel secretion system for effectors that go inside the plant cell. In contrast, effectors that end up in the space outside the plant cells are secreted by a classical system, which is shared by organisms from fungi to humans.

In this study, the international team focused on investigating how the fungus secretes effectors during invasion of rice tissue by producing strains secreting effectors linked to fluorescent proteins from jellyfish and corals. They performed microscopy to watch the fungus secreting these fluorescent proteins as it grows inside rice cells, and noticed that normal treatments that block protein secretion didn't stop those effectors that end up inside rice cells.

Identifying how these processes function will advance understanding of how disease micro-organisms evolve and will prove pivotal in controlling blast disease.

About the University of Exeter

The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in The Complete University Guide, 10th in the UK in The Times Good University Guide 2012 and 12th in the Guardian University Guide 2014. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.

The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses in the last few years; including landmark new student services centres - the Forum in Exeter and The Exchange in Cornwall - and world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute. It has plans for another £330 million of investment between now and 2016. http://www.exeter.ac.uk

For further information:

Dr Jo Bowler
University of Exeter Press Office
Office: +44 (0)1392 722062
Mobile: +44(0)7827 309 332
Twitter: @UoE_ScienceNews
j.bowler@exeter.ac.uk
About Kansas State University
K-State Research and Extension is a short name for the Kansas State University Agricultural Experiment Station and Cooperative Extension Service, a program designed to generate and distribute useful knowledge for the well-being of Kansans. Supported by county, state, federal and private funds, the program has county Extension offices, experiment fields, area Extension offices and regional research centers statewide. Its headquarters is on the K-State campus, Manhattan.

Jo Bowler | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>