Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restoring Coastal Wetlands? Check the Soil

08.09.2010
Helping understand ecosystem changes and improving restoration with soil data

Rising sea levels and coastal development are threatening coastal freshwater wetlands with saltwater intrusion. While most ecosystem restoration projects have focused on surface water and groundwater, new research finds that conditions in the vadose zone, the unsaturated soil below the surface but above the water table, are of particular importance to seedling survival in coastal floodplain ecosystems.

Scientists at the University of Florida, the South Florida Water Management District (SFWMD), and the Florida Park Service investigated key measurements of the vadose zone, soil moisture, and porewater salinity, in a historically freshwater floodplain forest of the Loxahatchee River in southeastern Florida. Reduced flows have resulted in the loss of bald cypress communities in favor of drier, more salt-tolerant species.

Combining this new information with surface water, groundwater, and meteorological data allowed the team to develop hydrological relationships that drive ecosystem changes and inform proposed restoration and management plans. Results from the study (funded by the SFWMD) are published in the September-October 2010 issue of the Journal of Environmental Quality.

The researchers measured soil moisture and porewater salinity for four years at two sites – one in an upstream, freshwater location and one in a downstream, tidal area. The team was particularly interested in determining the relationship between soil moisture and river levels to determine whether proposed restoration flows would provide good conditions for of bald cypress seeds, a valued ecosystem component in the area. A second major research goal was to explain the distribution of freshwater and salt-tolerant plants in the floodplain based on observed salinities.

The unique data collection allowed researchers to measure differences in vadose zone conditions between sites and over a wide range of climatic conditions (two years with above-average rainfall, followed by two years of extreme drought). They found that soil moisture in upriver areas can be closely predicted based on river level and topographic elevation in the floodplain.

The authors developed a calculator for land managers to estimate average soil moisture under different river flow conditions during restoration efforts. In downstream areas, river levels that consistently saturate the soil will likely limit seed germination and seedling survival to isolated high points.

The salinity tolerance threshold for bald cypress, 2 parts per thousand (ppt), was rarely exceeded in upstream areas, but was exceeded for considerable durations in downstream areas during dry seasons. High porewater salinity provided the best explanation for observed floodplain vegetation, which transitions from freshwater species near the upland to salt-tolerant species near the river’s edge.

From a management perspective, porewater salinity peaks were at most 63% of surface water salinity peaks, suggesting that restoration flows that maintain downstream river salinity below the 2 ppt threshold will also sufficiently prevent floodplain porewater salinities from exceeding this level.

“These results highlight the importance of understanding what’s happening in the root zone of plant species or communities you are trying to conserve or restore. We believe this work offers a framework for extending floodplain monitoring into the vadose zone in other locations,” says David Kaplan, one of the study’s authors.

Regarding future research, he adds, “Restoration efforts in coastal floodplain forests would be further improved by species-specific studies of moisture requirements for seed germination as well as studies on the effects of variable tidal inundation on the seeds and seedlings of important floodplain species.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/39/5/1570.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) , is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>