Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Restoring Coastal Wetlands? Check the Soil

08.09.2010
Helping understand ecosystem changes and improving restoration with soil data

Rising sea levels and coastal development are threatening coastal freshwater wetlands with saltwater intrusion. While most ecosystem restoration projects have focused on surface water and groundwater, new research finds that conditions in the vadose zone, the unsaturated soil below the surface but above the water table, are of particular importance to seedling survival in coastal floodplain ecosystems.

Scientists at the University of Florida, the South Florida Water Management District (SFWMD), and the Florida Park Service investigated key measurements of the vadose zone, soil moisture, and porewater salinity, in a historically freshwater floodplain forest of the Loxahatchee River in southeastern Florida. Reduced flows have resulted in the loss of bald cypress communities in favor of drier, more salt-tolerant species.

Combining this new information with surface water, groundwater, and meteorological data allowed the team to develop hydrological relationships that drive ecosystem changes and inform proposed restoration and management plans. Results from the study (funded by the SFWMD) are published in the September-October 2010 issue of the Journal of Environmental Quality.

The researchers measured soil moisture and porewater salinity for four years at two sites – one in an upstream, freshwater location and one in a downstream, tidal area. The team was particularly interested in determining the relationship between soil moisture and river levels to determine whether proposed restoration flows would provide good conditions for of bald cypress seeds, a valued ecosystem component in the area. A second major research goal was to explain the distribution of freshwater and salt-tolerant plants in the floodplain based on observed salinities.

The unique data collection allowed researchers to measure differences in vadose zone conditions between sites and over a wide range of climatic conditions (two years with above-average rainfall, followed by two years of extreme drought). They found that soil moisture in upriver areas can be closely predicted based on river level and topographic elevation in the floodplain.

The authors developed a calculator for land managers to estimate average soil moisture under different river flow conditions during restoration efforts. In downstream areas, river levels that consistently saturate the soil will likely limit seed germination and seedling survival to isolated high points.

The salinity tolerance threshold for bald cypress, 2 parts per thousand (ppt), was rarely exceeded in upstream areas, but was exceeded for considerable durations in downstream areas during dry seasons. High porewater salinity provided the best explanation for observed floodplain vegetation, which transitions from freshwater species near the upland to salt-tolerant species near the river’s edge.

From a management perspective, porewater salinity peaks were at most 63% of surface water salinity peaks, suggesting that restoration flows that maintain downstream river salinity below the 2 ppt threshold will also sufficiently prevent floodplain porewater salinities from exceeding this level.

“These results highlight the importance of understanding what’s happening in the root zone of plant species or communities you are trying to conserve or restore. We believe this work offers a framework for extending floodplain monitoring into the vadose zone in other locations,” says David Kaplan, one of the study’s authors.

Regarding future research, he adds, “Restoration efforts in coastal floodplain forests would be further improved by species-specific studies of moisture requirements for seed germination as well as studies on the effects of variable tidal inundation on the seeds and seedlings of important floodplain species.”

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/publications/jeq/abstracts/39/5/1570.

The Journal of Environmental Quality is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) , is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>