Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant wheat rebuilds cell walls when attacked by Hessian flies

20.05.2010
Wheat plants found to be resistant to Hessian fly larvae may be calling in reinforcements to build up rigid defenses.

Christie Williams, a research scientist with the U.S. Department of Agriculture's Agricultural Research Service and a Purdue University associate professor of entomology, found that resistant plants under attack by Hessian fly larvae increased production of surface waxes and cutin, a molecule responsible for rigidity and integrity of epidermal cells. In plants susceptible to the fly larvae, the genes thought to be responsible for cutin production were turned off - likely by the attacking larvae.

"The fly larvae seem to hijack the regulation of certain plant genes and cause the plant to turn off defenses that would keep it from becoming susceptible," said Williams, whose results were published in the early online version of The Plant Journal. "If we could find a way to block the larvae from affecting genes that are responsible for cutin production or find a way to keep that cutin from degrading, the plants might be more resistant."

Hessian fly larvae deposit saliva on wheat at their feeding site, and that ultimately makes the leaf surface permeable. The larvae then lap up the liquid that flows out of the plant's cells.

"We believe that the susceptible plants are becoming permeable because cutin is being degraded and not replenished," Williams said.

The changes in waxes and cutin production were measured through gas chromatography, in which samples from feeding sites were carried by a gas through a liquid column to separate the chemicals.

Jill Nemacheck, a USDA/ARS biological sciences technician at Purdue, said susceptible plants had large decreases in cutin. Resistant plants had slight increases in cutin and large increases in the wax found in the cuticle, or surface layer, of wheat plants.

Williams and Nemacheck also observed that expression of the genes thought to be responsible for cutin and wax production was affected by the fly larvae.

Nemacheck said real-time polymerase chain reactions were used to quantify gene expression. The process uses an enzyme and other reagents to amplify target sequences from the gene of interest to levels that are detectable in order to determine the levels of messenger RNA in the tissue samples. Comparing the amount of messenger RNA in different plant samples is important because messenger RNA carries instructions that tell cells which proteins to produce, such as those responsible for generating cutin or wax. Less messenger RNA in the original tissue samples would indicate lower levels of gene expression, which ultimately determines cutin or wax production.

"The change in gene expression reflected what we observed," Nemacheck said. "In resistant plants, expression of the genes that control wax and cutin production was increased. Susceptible plants had a decrease in the expression of those genes."

Plants were determined to have become permeable through staining the tissue with a red dye that was placed on the larvae feeding sites. Resistant plants that were observed to have increased cutin production had slight red spotting along the leaves from the dye. But those that were susceptible absorbed the dye because cutin was lacking and the dye was able to seep into the plant's cells.

This research was done in collaboration with Matthew Jenks, a Purdue professor of horticulture, and Dylan Kosma, a former Purdue graduate student in horticulture and landscape architecture. Williams' next step is to study how Hessian fly larvae affect the cell walls of susceptible plants.

The U.S. Department of Agriculture funded Williams' research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Christie Williams, 765-494-6763, christie.williams@ars.usda.gov

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>