Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant wheat goes for the gut to protect against Hessian flies

10.02.2010
Resistant wheat plants stave off attacks by Hessian fly larvae by essentially destroying the fly's midgut and its ability to absorb nutrients, according to a study by Purdue University and the U.S. Department of Agriculture.

Hessian fly larvae midguts – similar to human intestines – were observed in three different feeding situations. Larvae on susceptible plants had normal midgut function. Those that were given nothing to eat showed no damage to the midgut, though they starved. But those on plants resistant to Hessian flies showed serious midgut disruption.

Richard Shukle and Christie Williams, research scientists with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit and Purdue adjunct associate professors of entomology, and Subhashree Subramanyam, a research associate in agronomy, had their findings published in the early online edition of the Journal of Insect Physiology.

Shukle said that within three hours, larvae feeding on resistant wheat had abnormal microvilli, fingerlike appendages that extend inward from the walls of the midgut to increase surface area for nutrient absorption. By six hours, the microvilli were nearly destroyed and the midgut was void of food.

"Some chemical or compound they're encountering from the resistant plant is causing the microvilli to become disrupted, and it's happening very quickly," Shukle said. "The midgut is certainly one of the major targets of the defense compounds elicited from a resistant plant. There could be other targets, but the midgut is a major target."

The research also showed that Hessian fly midguts are lacking a peritrophic membrane, a common insect feature that protects the microvilli from toxic substances.

Hessian flies cause considerable damage to wheat crops, with grain yields reduced as much as 20 bushels per acre with moderate infestation levels. There are about a half dozen undeployed genes identified in wheat that offer high resistance to Hessian flies and could be deployed to defend the plants. But understanding how the resistance genes stave off Hessian flies is important because the fly has overcome or is overcoming several genes initially deployed to protect wheat lines.

Williams and Subramanyam believe lectins could be one of the toxic substances causing the midgut disruption. Lectins are proteins that bind carbohydrates.

Williams said resistant wheat plants contain higher levels of proteins made by the Hessian fly responsive genes, called Hfr-1 and Hfr-3, than susceptible plants. Studies have shown that the protein made by Hfr-1 is a lectin, and the protein made by Hfr-3 is lectin-like.

The fly larvae activate the genes responsible for resistance, and Williams and Subramanyam believe those genes may be triggering lectin function.

"Lectins are one of the toxins in resistant plants, and they are probably targeting the microvilli," Subramanyam said.

Shukle said he will next try to determine what is attaching to the microvilli causing the disruption and will test the Hfr-1 protein to see if it is toxic to the flies.

The USDA ARS Crop Production and Pest Control Research Unit funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Richard Shukle, 765-494-6351, shukle@purdue.edu

Christie Williams, 765-494-6763, cwilliams@purdue.edu

Subhashree Subramanyam, 765-494-9398, shubha@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>