Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant wheat goes for the gut to protect against Hessian flies

10.02.2010
Resistant wheat plants stave off attacks by Hessian fly larvae by essentially destroying the fly's midgut and its ability to absorb nutrients, according to a study by Purdue University and the U.S. Department of Agriculture.

Hessian fly larvae midguts – similar to human intestines – were observed in three different feeding situations. Larvae on susceptible plants had normal midgut function. Those that were given nothing to eat showed no damage to the midgut, though they starved. But those on plants resistant to Hessian flies showed serious midgut disruption.

Richard Shukle and Christie Williams, research scientists with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit and Purdue adjunct associate professors of entomology, and Subhashree Subramanyam, a research associate in agronomy, had their findings published in the early online edition of the Journal of Insect Physiology.

Shukle said that within three hours, larvae feeding on resistant wheat had abnormal microvilli, fingerlike appendages that extend inward from the walls of the midgut to increase surface area for nutrient absorption. By six hours, the microvilli were nearly destroyed and the midgut was void of food.

"Some chemical or compound they're encountering from the resistant plant is causing the microvilli to become disrupted, and it's happening very quickly," Shukle said. "The midgut is certainly one of the major targets of the defense compounds elicited from a resistant plant. There could be other targets, but the midgut is a major target."

The research also showed that Hessian fly midguts are lacking a peritrophic membrane, a common insect feature that protects the microvilli from toxic substances.

Hessian flies cause considerable damage to wheat crops, with grain yields reduced as much as 20 bushels per acre with moderate infestation levels. There are about a half dozen undeployed genes identified in wheat that offer high resistance to Hessian flies and could be deployed to defend the plants. But understanding how the resistance genes stave off Hessian flies is important because the fly has overcome or is overcoming several genes initially deployed to protect wheat lines.

Williams and Subramanyam believe lectins could be one of the toxic substances causing the midgut disruption. Lectins are proteins that bind carbohydrates.

Williams said resistant wheat plants contain higher levels of proteins made by the Hessian fly responsive genes, called Hfr-1 and Hfr-3, than susceptible plants. Studies have shown that the protein made by Hfr-1 is a lectin, and the protein made by Hfr-3 is lectin-like.

The fly larvae activate the genes responsible for resistance, and Williams and Subramanyam believe those genes may be triggering lectin function.

"Lectins are one of the toxins in resistant plants, and they are probably targeting the microvilli," Subramanyam said.

Shukle said he will next try to determine what is attaching to the microvilli causing the disruption and will test the Hfr-1 protein to see if it is toxic to the flies.

The USDA ARS Crop Production and Pest Control Research Unit funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Richard Shukle, 765-494-6351, shukle@purdue.edu

Christie Williams, 765-494-6763, cwilliams@purdue.edu

Subhashree Subramanyam, 765-494-9398, shubha@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>