Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant wheat goes for the gut to protect against Hessian flies

10.02.2010
Resistant wheat plants stave off attacks by Hessian fly larvae by essentially destroying the fly's midgut and its ability to absorb nutrients, according to a study by Purdue University and the U.S. Department of Agriculture.

Hessian fly larvae midguts – similar to human intestines – were observed in three different feeding situations. Larvae on susceptible plants had normal midgut function. Those that were given nothing to eat showed no damage to the midgut, though they starved. But those on plants resistant to Hessian flies showed serious midgut disruption.

Richard Shukle and Christie Williams, research scientists with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit and Purdue adjunct associate professors of entomology, and Subhashree Subramanyam, a research associate in agronomy, had their findings published in the early online edition of the Journal of Insect Physiology.

Shukle said that within three hours, larvae feeding on resistant wheat had abnormal microvilli, fingerlike appendages that extend inward from the walls of the midgut to increase surface area for nutrient absorption. By six hours, the microvilli were nearly destroyed and the midgut was void of food.

"Some chemical or compound they're encountering from the resistant plant is causing the microvilli to become disrupted, and it's happening very quickly," Shukle said. "The midgut is certainly one of the major targets of the defense compounds elicited from a resistant plant. There could be other targets, but the midgut is a major target."

The research also showed that Hessian fly midguts are lacking a peritrophic membrane, a common insect feature that protects the microvilli from toxic substances.

Hessian flies cause considerable damage to wheat crops, with grain yields reduced as much as 20 bushels per acre with moderate infestation levels. There are about a half dozen undeployed genes identified in wheat that offer high resistance to Hessian flies and could be deployed to defend the plants. But understanding how the resistance genes stave off Hessian flies is important because the fly has overcome or is overcoming several genes initially deployed to protect wheat lines.

Williams and Subramanyam believe lectins could be one of the toxic substances causing the midgut disruption. Lectins are proteins that bind carbohydrates.

Williams said resistant wheat plants contain higher levels of proteins made by the Hessian fly responsive genes, called Hfr-1 and Hfr-3, than susceptible plants. Studies have shown that the protein made by Hfr-1 is a lectin, and the protein made by Hfr-3 is lectin-like.

The fly larvae activate the genes responsible for resistance, and Williams and Subramanyam believe those genes may be triggering lectin function.

"Lectins are one of the toxins in resistant plants, and they are probably targeting the microvilli," Subramanyam said.

Shukle said he will next try to determine what is attaching to the microvilli causing the disruption and will test the Hfr-1 protein to see if it is toxic to the flies.

The USDA ARS Crop Production and Pest Control Research Unit funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Richard Shukle, 765-494-6351, shukle@purdue.edu

Christie Williams, 765-494-6763, cwilliams@purdue.edu

Subhashree Subramanyam, 765-494-9398, shubha@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>