Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resistant wheat goes for the gut to protect against Hessian flies

10.02.2010
Resistant wheat plants stave off attacks by Hessian fly larvae by essentially destroying the fly's midgut and its ability to absorb nutrients, according to a study by Purdue University and the U.S. Department of Agriculture.

Hessian fly larvae midguts – similar to human intestines – were observed in three different feeding situations. Larvae on susceptible plants had normal midgut function. Those that were given nothing to eat showed no damage to the midgut, though they starved. But those on plants resistant to Hessian flies showed serious midgut disruption.

Richard Shukle and Christie Williams, research scientists with the USDA Agricultural Research Service Crop Production and Pest Control Research Unit and Purdue adjunct associate professors of entomology, and Subhashree Subramanyam, a research associate in agronomy, had their findings published in the early online edition of the Journal of Insect Physiology.

Shukle said that within three hours, larvae feeding on resistant wheat had abnormal microvilli, fingerlike appendages that extend inward from the walls of the midgut to increase surface area for nutrient absorption. By six hours, the microvilli were nearly destroyed and the midgut was void of food.

"Some chemical or compound they're encountering from the resistant plant is causing the microvilli to become disrupted, and it's happening very quickly," Shukle said. "The midgut is certainly one of the major targets of the defense compounds elicited from a resistant plant. There could be other targets, but the midgut is a major target."

The research also showed that Hessian fly midguts are lacking a peritrophic membrane, a common insect feature that protects the microvilli from toxic substances.

Hessian flies cause considerable damage to wheat crops, with grain yields reduced as much as 20 bushels per acre with moderate infestation levels. There are about a half dozen undeployed genes identified in wheat that offer high resistance to Hessian flies and could be deployed to defend the plants. But understanding how the resistance genes stave off Hessian flies is important because the fly has overcome or is overcoming several genes initially deployed to protect wheat lines.

Williams and Subramanyam believe lectins could be one of the toxic substances causing the midgut disruption. Lectins are proteins that bind carbohydrates.

Williams said resistant wheat plants contain higher levels of proteins made by the Hessian fly responsive genes, called Hfr-1 and Hfr-3, than susceptible plants. Studies have shown that the protein made by Hfr-1 is a lectin, and the protein made by Hfr-3 is lectin-like.

The fly larvae activate the genes responsible for resistance, and Williams and Subramanyam believe those genes may be triggering lectin function.

"Lectins are one of the toxins in resistant plants, and they are probably targeting the microvilli," Subramanyam said.

Shukle said he will next try to determine what is attaching to the microvilli causing the disruption and will test the Hfr-1 protein to see if it is toxic to the flies.

The USDA ARS Crop Production and Pest Control Research Unit funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Richard Shukle, 765-494-6351, shukle@purdue.edu

Christie Williams, 765-494-6763, cwilliams@purdue.edu

Subhashree Subramanyam, 765-494-9398, shubha@purdue.edu

Ag Communications: (765) 494-8415;
Steve Leer, sleer@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>