Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Pioneer New Approach to Assist Scientists, Farmers

Sustainable farming, initially adopted to preserve soil quality for future generations, may also play a role in maintaining a healthy climate, according to researchers at the Department of Energy’s Oak Ridge and Los Alamos national laboratories.

ORNL and LANL scientists are exploring the large potential of the earth’s soils to sequester carbon, with estimates claiming that new land-use practices could greatly reduce U.S. carbon emissions by as much as 25 percent.

But exactly which practices are the most effective is still unclear, and a research paper published in the Soil Science Society of America Journal shines some light on this topic by introducing an easy-to-use field-portable approach to measure the carbon content of soils.

“This is a tool one could use to measure changes in soil carbon over time and try to establish whether soil carbon stocks are increasing or decreasing as a result of land-use practices,” said lead author Madhavi Martin of ORNL’s Environmental Sciences Division. “Although it is possible to measure these properties in the laboratory, the simplicity and portability of the device allow researchers exponentially greater flexibility to conduct their investigations.”

The paper describes the adaptation of Laser Induced Breakdown Spectroscopy, or LIBS, a technique that once made Martin something of a celebrity when she used it confirm the common origin of two separate pieces of firewood – evidence that eventually led to a confession in a 2006 Texas murder case. LIBS works by measuring the light emitted when a small portion of the sample is annihilated with a laser pulse, a flash that provides an elemental fingerprint of virtually any substance under examination.

The challenge for the authors was configuring the experimental design to ensure accurate measurements of carbon regardless of soil characteristics. To accomplish this, the authors acquired a varied set of soil samples with different sand, silt and clay compositions from the Natural Resources Conservation Service and tested them against numerous laser wavelength and energies.

“We found that LIBS is a promising technique that provides a robust method for the sampling of soil carbon, relying solely on technology that can be taken to the field,” Martin said. “Crop scientists, carbon managers and instrument developers should find these results encouraging.”

With new techniques such as LIBS to assist them, researchers hope they can eventually identify the agricultural practices that provide the maximum benefits to farmers and the climate alike. Intensive farming is a double-edged sword as it can greatly enhance crop production in many areas of the country. Often, however, this comes at the expense of soil health in addition to accelerating the rate of climate change, according to the researchers.

Twice as much carbon is stored in the soils of the world as in the atmosphere, thanks to centuries of decomposition of plants and other organic matter. Fertile (high carbon content) soil is necessary for the growth of large healthy crops. However, fertile soil is also a favorite target of naturally occurring bacteria.

Fortunately for farmers and plants, the majority of carbon beneath our feet is physically protected from bacteria in what scientists call soil aggregates. A large portion of that carbon is concentrated near the earth’s surface and therefore highly vulnerable to changes in land use. When a soil’s aggregate structure is disturbed, such as through intensive farming, the organic matter it protects becomes accessible to soil microorganisms that use it as an energy source, releasing the stored carbon back into the atmosphere as the greenhouse gas CO2.

“Disruption of soil structure is estimated to contribute to a 50 percent loss of soil carbon,” said Chuck Garten, a soil scientist at ORNL. “When the microstructure of the soil is disturbed, it breaks down the aggregates allowing large losses of soil carbon as a result of microbial decomposition.”

This lesson was learned the hard way by many American farmers when pressure for production leads to serious soil degradation through erosion and nutrient losses. Intense farming by pioneer farmers in the first 30 years of settlement depleted the organic matter in the U.S. Great Plains by more than 50 percent with soil productivity falling more than 70 percent during the same period.

Eventually, better agricultural practices were adopted and production recovered. Still, grassland and forest soils continue to lose 20 percent to 50 percent of their original carbon content within the first 40 years of cultivation while tropical climates that practice shifting cultivation or slash and burn agriculture can lose their fertility within two to three years. Farmers make up for the loss by simply moving to new fields or replenishing carbon stocks with the use of manures and other organic wastes.

The research at Oak Ridge National Laboratory was funded by the Department of Energy’s Office of Science, Biological and Environmental Research.

UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | Newswise Science News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>